login
A116767
Number of permutations of length n which avoid the patterns 1234, 3142, 3421.
0
1, 2, 6, 21, 71, 208, 526, 1174, 2370, 4416, 7714, 12783, 20277, 31004, 45946, 66280, 93400, 128940, 174798, 233161, 306531, 397752, 510038, 647002, 812686, 1011592, 1248714, 1529571, 1860241, 2247396
OFFSET
1,2
FORMULA
G.f.: A(x) = -{x(2x^8-3x^7+x^6-9x^5+15x^4-14x^3+13x^2-5x+1)}/{(x-1)^7}
For n >= 3, a(n) = (n^6 + 45n^5 - 245n^4 - 465n^3 + 8164n^2 - 24780n + 25920)/720. - Franklin T. Adams-Watters, Sep 16 2006
a(1)=1, a(2)=2, a(3)=6, a(4)=21, a(5)=71, a(6)=208, a(7)=526, a(8)=1174, a(9)=2370, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+a (n-7) [From Harvey P. Dale, Aug 31 2011]
MATHEMATICA
Join[{1, 2, 6}, Table[(n^6+45n^5-245n^4-465n^3+8164n^2-24780n+25920)/ 720, {n, 4, 40}]] (* or *) Join[{1, 2}, LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {6, 21, 71, 208, 526, 1174, 2370}, 40]] (* Harvey P. Dale, Aug 31 2011 *)
CROSSREFS
Sequence in context: A116795 A116766 A116825 * A116759 A116835 A294725
KEYWORD
nonn,easy
AUTHOR
Lara Pudwell, Feb 26 2006
STATUS
approved