login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116719 Number of monocyclic skeletons with n carbon atoms and a ring size of 4. 3

%I

%S 1,1,4,8,24,55,147,365,954,2431,6327,16369,42743,111595,292849,769805,

%T 2030456,5366844,14222475,37768154,100510364,267987501,715847932,

%U 1915406263,5133382014,13778469949,37035674682,99683747508,268647638770,724879674667,1958151665752

%N Number of monocyclic skeletons with n carbon atoms and a ring size of 4.

%H Andrew Howroyd, <a href="/A116719/b116719.txt">Table of n, a(n) for n = 4..200</a>

%H Camden A. Parks and James B. Hendrickson, <a href="https://pubs.acs.org/doi/abs/10.1021/ci00002a021">Enumeration of monocyclic and bicyclic carbon skeletons</a>, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).

%e If n=5 then the number of monocyclic skeletons with ring size of four is 1.

%t G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];

%t T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];

%t a[n_] := T[n, 4];

%t Table[a[n], {n, 4, 30}] (* _Jean-Fran├žois Alcover_, Jul 03 2018, after _Andrew Howroyd_ *)

%Y Column k=4 of A305059.

%Y Cf. A063832.

%K nonn

%O 4,3

%A _Parthasarathy Nambi_, Aug 13 2006

%E More terms from _N. J. A. Sloane_, Aug 27 2006

%E a(5) corrected and terms a(26) and beyond from _Andrew Howroyd_, May 24 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 05:35 EDT 2020. Contains 335658 sequences. (Running on oeis4.)