This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116676 Number of odd parts in all partitions of n into distinct parts. 7
 0, 1, 0, 2, 2, 3, 4, 5, 8, 10, 14, 16, 22, 26, 34, 43, 54, 64, 80, 96, 116, 142, 170, 202, 242, 288, 340, 404, 474, 556, 652, 762, 886, 1034, 1198, 1389, 1606, 1852, 2132, 2454, 2814, 3224, 3690, 4214, 4804, 5478, 6228, 7072, 8028, 9094, 10290, 11635, 13134 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) = Sum(k*A116675(n,k), k>=0). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz) FORMULA G.f.: product(1+x^j, j=1..infinity)*sum(x^(2j-1)/(1+x^(2j-1)), j=1..infinity). For n > 0, a(n) = A015723(n) - A116680(n). - Vaclav Kotesovec, May 26 2018 a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018 EXAMPLE a(9) = 10 because in the partitions of 9 into distinct parts, namely, [9], [81], [72], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2], we have a total of 10 odd parts. MAPLE f:=product(1+x^j, j=1..64)*sum(x^(2*j-1)/(1+x^(2*j-1)), j=1..35): fser:=series(f, x=0, 60): seq(coeff(fser, x, n), n=0..56); # second Maple program b:= proc(n, i) option remember; local f, g;       if n=0 then [1, 0] elif i<1 then [0, 0]     else f:=b(n, i-1); g:=`if`(i>n, [0, 0], b(n-i, min(n-i, i-1)));          [f[1]+g[1], f[2]+g[2] +irem(i, 2)*g[1]]       fi     end: a:= n-> b(n, n)[2]: seq (a(n), n=0..60);  # Alois P. Heinz, Nov 21 2012 MATHEMATICA b[n_, i_] := b[n, i] = Module[{f, g}, Which [n == 0, {1, 0}, i<1 , {0, 0}, True, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, Min[n-i, i-1]]]; {f[[1]] + g[[1]],       f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 0, 60}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *) CROSSREFS Cf. A116675, A305123, A305124. Cf. A305082, A015723, A090867, A116680, A067588. Sequence in context: A211228 A186505 A228693 * A240575 A176538 A285261 Adjacent sequences:  A116673 A116674 A116675 * A116677 A116678 A116679 KEYWORD nonn AUTHOR Emeric Deutsch, Feb 22 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)