login
A116676
Number of odd parts in all partitions of n into distinct parts.
7
0, 1, 0, 2, 2, 3, 4, 5, 8, 10, 14, 16, 22, 26, 34, 43, 54, 64, 80, 96, 116, 142, 170, 202, 242, 288, 340, 404, 474, 556, 652, 762, 886, 1034, 1198, 1389, 1606, 1852, 2132, 2454, 2814, 3224, 3690, 4214, 4804, 5478, 6228, 7072, 8028, 9094, 10290, 11635, 13134
OFFSET
0,4
COMMENTS
a(n) = Sum(k*A116675(n,k), k>=0).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
FORMULA
G.f.: product(1+x^j, j=1..infinity)*sum(x^(2j-1)/(1+x^(2j-1)), j=1..infinity).
For n > 0, a(n) = A015723(n) - A116680(n). - Vaclav Kotesovec, May 26 2018
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 26 2018
EXAMPLE
a(9) = 10 because in the partitions of 9 into distinct parts, namely, [9], [81], [72], [6,3], [6,2,1], [5,4], [5,3,1] and [4,3,2], we have a total of 10 odd parts.
MAPLE
f:=product(1+x^j, j=1..64)*sum(x^(2*j-1)/(1+x^(2*j-1)), j=1..35): fser:=series(f, x=0, 60): seq(coeff(fser, x, n), n=0..56);
# second Maple program:
b:= proc(n, i) option remember; local f, g;
if n=0 then [1, 0] elif i<1 then [0, 0]
else f:=b(n, i-1); g:=`if`(i>n, [0, 0], b(n-i, min(n-i, i-1)));
[f[1]+g[1], f[2]+g[2] +irem(i, 2)*g[1]]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..60); # Alois P. Heinz, Nov 21 2012
MATHEMATICA
b[n_, i_] := b[n, i] = Module[{f, g}, Which [n == 0, {1, 0}, i<1 , {0, 0}, True, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, Min[n-i, i-1]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]; Table [a[n], {n, 0, 60}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 22 2006
STATUS
approved