Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 May 22 2015 05:56:40
%S 1,1,2,1,1,2,1,2,2,2,3,1,5,3,4,1,2,7,1,2,8,2,2,10,3,2,11,5,2,13,7,4,
%T 12,11,1,19,11,1,2,18,17,1,3,20,21,2,2,22,27,3,2,25,32,5,4,24,41,7,2,
%U 30,46,11,2,31,56,15,2,36,62,22,3,33,80,25,1,2,39,87,36,1,4,38,103,45,2,2,45
%N Triangle read by rows: T(n,k) is the number of partitions of n into odd parts and having exactly k distinct parts (n>=1, k>=1).
%C Row n has floor(sqrt(n)) terms. Row sums yield A000009. T(n,1)=A001227(n) (n>=1). Sum(k*T(n,k),k>=1)=A038348(n-1) (n>=1).
%H Alois P. Heinz, <a href="/A116674/b116674.txt">Rows n = 1..1000, flattened</a>
%F G.f.: product(1+tx^(2j-1)/(1-x^(2j-1)), j=1..infinity).
%e T(9,2)=4 because the only partitions of 9 into odd parts and having 2 distinct parts are [7,1,1],[5,1,1,1,1],[3,3,1,1,1] and [3,1,1,1,1,1,1].
%e Triangle starts:
%e 1;
%e 1;
%e 2;
%e 1,1;
%e 2,1;
%e 2,2;
%e 2,3;
%p g:=product(1+t*x^(2*j-1)/(1-x^(2*j-1)),j=1..35): gser:=simplify(series(g,x=0,34)): for n from 1 to 29 do P[n]:=coeff(gser,x^n) od: for n from 1 to 29 do seq(coeff(P[n],t,j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form
%p # second Maple program:
%p with(numtheory):
%p b:= proc(n, i) option remember; expand(`if`(n=0, 1,
%p `if`(i<1, 0, add(b(n-i*j, i-2)*`if`(j=0, 1, x), j=0..n/i))))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(
%p b(n, iquo(n+1, 2)*2-1)):
%p seq(T(n), n=1..30); # _Alois P. Heinz_, Mar 08 2015
%t b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-2]*If[j == 0, 1, x], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, Quotient[n+1, 2]*2-1]]; Table[T[n], {n, 1, 30}] // Flatten (* _Jean-François Alcover_, May 22 2015, after _Alois P. Heinz_ *)
%Y Cf. A000009, A001227, A038348.
%K nonn,tabf,look
%O 1,3
%A _Emeric Deutsch_, Feb 22 2006