OFFSET
0,6
COMMENTS
Column 1 of A116633.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: x^3/((1-x^3)*Product_{j>=1} ((1-x^(3j-2))(1-x^(3j-1))).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (6*Pi*n^(1/4)). - Vaclav Kotesovec, Mar 07 2016
EXAMPLE
a(7)=5 because we have [6,1],[4,3],[3,2,2],[3,2,1,1] and [3,1,1,1,1].
MAPLE
g:=x^3/(1-x^3)/product((1-x^(3*j-2))*(1-x^(3*j-1)), j=1..30): gser:=series(g, x=0, 56): seq(coeff(gser, x, n), n=0..53);
MATHEMATICA
nmax = 50; CoefficientList[Series[x^3/(1-x^3) * Product[1/((1-x^(3*k-2))*(1-x^(3*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 19 2006
STATUS
approved