%I #27 Sep 08 2022 08:45:24
%S 5,23,59,503,719,1319,2729,3359,4079,5813,9239,12143,13799,24359,
%T 29759,42839,46619,54833,68879,91079,110543,166319,195053,205319,
%U 215939,262079,328439,342929,357839,438899,531359,635969,941093,1124759,1259603,1367519,1442783
%N Primes of the form k^3-k-1.
%H Vincenzo Librandi, <a href="/A116581/b116581.txt">Table of n, a(n) for n = 1..10000</a>
%H Ken Ono and Scott Ahlgren, <a href="http://www.mathcs.emory.edu/~ono/publications-cv/pdfs/070.pdf">Weierstrass points on X0(p) and supersingular j-invariants</a>, Mathematische Annalen 325, 2003, pp. 355-368.
%t Select[Table[n^3-n-1,{n,0,800}],PrimeQ] (* _Vincenzo Librandi_, Dec 07 2011 *)
%o (Magma) [ a: n in [1..200] | IsPrime(a) where a is n^3-n-1 ]; // _Vincenzo Librandi_, Dec 07 2011
%o (Python)
%o from sympy import isprime
%o def aupton(terms):
%o k, alst = 2, []
%o while len(alst) < terms:
%o if isprime(k**3-k-1): alst.append(k**3-k-1)
%o k += 1
%o return alst
%o print(aupton(37)) # _Michael S. Branicky_, May 23 2021
%Y Cf. A002327.
%K nonn
%O 1,1
%A _Roger L. Bagula_, Mar 22 2006
%E Edited by _N. J. A. Sloane_, Jan 01 2007
%E More terms from _Artur Jasinski_, Jan 01 2007