login
A116567
a(n) = +1476*a(n-6) +46656*a(n-12).
1
0, 1, 2, 2, 40, 228, 228, 1440, 4248, 4248, 60336, 336528, 336528, 2172096, 6363360, 6363360, 90922176, 507352896, 507352896, 3273198336, 9590514048, 9590514048, 137016168192, 764553924864, 764553924864, 4932582054912, 14452487659008
OFFSET
0,3
LINKS
FORMULA
G.f.: -x*(1296*x^9 +1296*x^8 +1296*x^7 -36*x^6 +228*x^5 +228*x^4 +40*x^3 +2*x^2 +2*x +1) / (46656*x^12 +1476*x^6 -1). - Colin Barker, Mar 11 2013
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 1476, 0, 0, 0, 0, 0, 46656}, {0, 1, 2, 2, 40, 228, 228, 1440, 4248, 4248, 60336, 336528}, 30] (* Harvey P. Dale, Aug 05 2015 *)
PROG
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(-(1296*x^9+1296*x^8+1296*x^7-36*x^6+228*x^5+228*x^4+40*x^3+2*x^2 +2*x+1)/(46656*x^12+1476*x^6-1))); // Bruno Berselli, Mar 12 2013
(PARI) x='x+O('x^50); Vec(-x*(1296*x^9 +1296*x^8 +1296*x^7 -36*x^6 +228*x^5 +228*x^4 +40*x^3 +2*x^2 +2*x +1)/(46656*x^12 +1476*x^6 -1)) \\ G. C. Greubel, Sep 20 2017
CROSSREFS
Sequence in context: A202711 A222668 A210246 * A215049 A087541 A153434
KEYWORD
nonn,easy,less
AUTHOR
Roger L. Bagula, Mar 18 2006
EXTENSIONS
New name and overall edit, Colin Barker and Joerg Arndt, Mar 11 2013
STATUS
approved