login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116551 Permutation of natural numbers generated by 3-rowed array shown below. 1
0, 3, 1, 6, 4, 2, 9, 7, 5, 12, 10, 8, 15, 13, 11, 18, 16, 14, 21, 19, 17, 24, 22, 20, 27, 25, 23, 30, 28, 26, 33, 31, 29, 36, 34, 32, 39, 37, 35, 42, 40, 38, 45, 43, 41, 48, 46, 44, 51, 49, 47, 54, 52, 50, 57, 55, 53, 60, 58, 56, 63, 61, 59, 66, 64, 62, 69, 67, 65, 72, 70, 68, 75 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

0 3 6 9 12 15 18 21 24 ... a(n)= 3n

1 4 7 10 13 16 19 22 25 ... a(n)= 3n+1

2 5 8 11 14 17 20 23 26 ... a(n)= 3n+2

REFERENCES

M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.

Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).

FORMULA

Starting at the term a(3), a(n+3k) = a(n) + 3k, with k>=1.

From Chai Wah Wu, Jul 10 2016: (Start)

a(n) = a(n-1) + a(n-3) - a(n-4) for n > 7.

G.f.: x^2*(2*x^5 - 5*x^3 + 5*x^2 - 2*x + 3)/(x^4 - x^3 - x + 1). (End)

MATHEMATICA

Rest[CoefficientList[Series[x^2*(2*x^5 - 5*x^3 + 5*x^2 - 2*x + 3)/(x^4 - x^3 - x + 1), {x, 0, 50}], x]] (* or *) Join[{0, 3, 1, 6, 4, 2, 9}, LinearRecurrence[{1, 0, 1, -1}, {7, 5, 12, 10}, 50]] (* G. C. Greubel, Sep 20 2017 *)

PROG

(PARI) x='x+O('x^50); Vec(x^2*(2*x^5 - 5*x^3 + 5*x^2 - 2*x + 3)/(x^4 - x^3 - x + 1)) \\ G. C. Greubel, Sep 20 2017

CROSSREFS

Cf. A115302.

Sequence in context: A209165 A121437 A078585 * A213783 A163330 A021320

Adjacent sequences:  A116548 A116549 A116550 * A116552 A116553 A116554

KEYWORD

easy,nonn

AUTHOR

Giovanni Teofilatto, Mar 17 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 11:46 EDT 2019. Contains 322330 sequences. (Running on oeis4.)