This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116503 Sum of the areas of the Durfee squares of all partitions of n. 3
 1, 2, 3, 8, 13, 26, 39, 64, 98, 148, 216, 322, 455, 648, 904, 1258, 1711, 2336, 3128, 4198, 5548, 7330, 9569, 12496, 16146, 20836, 26674, 34098, 43273, 54846, 69072, 86848, 108627, 135612, 168527, 209066, 258271, 318482, 391321, 479946, 586709 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = sum(k^2*A115994(n,k), k=1..floor(sqrt(n))). LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 FORMULA G.f.: sum(k^2*z^(k^2)/product((1-z^j)^2, j=1..k), k=1..infinity). EXAMPLE a(4) = 8 because the partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], have Durfee squares of sizes 1,1,2,1 and 1, respectively and 1^2+1^2+2^2+1^2+1^2=8. MAPLE g:=sum(k^2*z^(k^2)/product((1-z^j)^2, j=1..k), k=1..10): gser:=series(g, z=0, 52): seq(coeff(gser, z^n), n=1..45); # second Maple program: b:= proc(n, i) option remember;       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))     end: a:= n-> add(k^2*add(b(m, k)*b(n-k^2-m, k),             m=0..n-k^2), k=1..floor(sqrt(n))): seq(a(n), n=1..40);  # Alois P. Heinz, Apr 09 2012 MATHEMATICA b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum [k^2*Sum[b[m, k]*b[n - k^2 - m, k], {m, 0, n - k^2}], {k, 1, Sqrt[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *) CROSSREFS Cf. A115994, A115995. Sequence in context: A213046 A262021 A221181 * A105204 A045692 A103196 Adjacent sequences:  A116500 A116501 A116502 * A116504 A116505 A116506 KEYWORD easy,nonn AUTHOR Emeric Deutsch, Vladeta Jovovic, Feb 18 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.