login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116483 Expansion of (1 + x) / (5*x^2 - 2*x + 1). 3
1, 3, 1, -13, -31, 3, 161, 307, -191, -1917, -2879, 3827, 22049, 24963, -60319, -245453, -189311, 848643, 2643841, 1044467, -11130271, -27482877, 685601, 138785587, 274143169, -145641597, -1661999039, -2595790093, 3118415009, 19215780483 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of signed powers of 2: (1, 2, -4, -8, 16, 32, -64, -128, ...).

Inverse binonomial transform of (1, 4, 8, 0, -64, -256, -512, 0, 4096, 16384, 32768, 0, -262144, -1048576, -2097152, 0, ...).

G.f.*(1-x)/(1+x) (i.e, convolution with 1,-2,2,-2,2,-2, ... ) yields A006495.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.

J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]

Index entries for linear recurrences with constant coefficients, signature (2,-5).

FORMULA

a(n) = 2*a(n-1) -5*a(n-2). - Paul Curtz, Apr 18 2011

a(n) = (1/2 + i/2)*((1 - 2*i)^n - i*(1 + 2*i)^n) where i=sqrt(-1). - Colin Barker, Aug 25 2017

PROG

(PARI) a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1, #v, real(v[k])+imag(v[k])); }

/* cf. A138749 */ /* Joerg Arndt, Jul 06 2011 */

Floretion Algebra Multiplication Program, FAMP Code: 2ibaseforseq[A*B] with A = - .5'i + .5'j - .5i' + .5j' + 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' ;

(PARI) Vec((1 + x) / (5*x^2 - 2*x + 1) + O(x^50)) \\ Colin Barker, Aug 25 2017

CROSSREFS

Cf. A000079, A006495, A116484.

Sequence in context: A053286 A008826 A103440 * A262593 A010290 A074960

Adjacent sequences:  A116480 A116481 A116482 * A116484 A116485 A116486

KEYWORD

easy,sign

AUTHOR

Creighton Dement, Feb 17 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 08:55 EST 2017. Contains 294861 sequences.