login
A116433
Consider the array T(r,c) where is the number of c-almost primes less than or equal to r^c, r >= 1, c >= 0. Read the array by antidiagonals.
2
0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 3, 1, 0, 1, 3, 6, 5, 1, 0, 1, 3, 9, 13, 8, 1, 0, 1, 4, 13, 30, 34, 14, 1, 0, 1, 4, 17, 50, 90, 77, 23, 1, 0, 1, 4, 22, 82, 200, 269, 177, 39, 1, 0, 1, 4, 26, 125, 385, 726, 788, 406, 64, 1, 0, 1, 5, 34, 181, 669, 1688, 2613, 2249, 887, 103, 1, 0, 1, 5
OFFSET
0,8
EXAMPLE
The array begins:
0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
1 2 3 5 8 14 23 39 64 103 169
1 2 6 13 34 77 177 406 887 1962 4225
1 3 9 30 90 269 788 2249 6340 17526 47911
T(3,2)=3 because there are 3 2-almost primes <= 3^2 = 9, namely 4, 6, and 9 (see A001358).
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
Table[ If[k == 0, 1, AlmostPrimePi[n - k + 1, k^(n - k + 1)]], {n, 0, 7}, {k, n, 0, -1}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
NAME corrected by R. J. Mathar, Jun 20 2021
STATUS
approved