login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116389 Riordan array (1/sqrt(1-4*x^2), (1+x)/sqrt(1-4*x^2) -1). 4
1, 0, 1, 2, 2, 1, 0, 4, 4, 1, 6, 10, 10, 6, 1, 0, 16, 28, 20, 8, 1, 20, 44, 62, 62, 34, 10, 1, 0, 64, 152, 168, 120, 52, 12, 1, 70, 186, 328, 436, 374, 210, 74, 14, 1, 0, 256, 748, 1084, 1072, 736, 340, 100, 16, 1, 252, 772, 1606, 2598, 2924, 2332, 1326, 518, 130, 18, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

FORMULA

T(n,k) = Sum_{j=0..k} (-1)^(k-j)*C(k,j) * Sum_{i=0..floor(n/2)} 4^i * C(i+(j-1)/2, i)*C(j,n-2*i).

EXAMPLE

Triangle begins:

   1;

   0,  1;

   2,  2,  1;

   0,  4,  4,  1;

   6, 10, 10,  6,  1;

   0, 16, 28, 20,  8,  1;

  20, 44, 62, 62, 34, 10, 1;

MATHEMATICA

T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[k, j]*Sum[4^r*Binomial[r+(j-1)/2, r]* Binomial[j, n-2*r], {r, 0, Floor[n/2]}], {j, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 23 2019 *)

PROG

(PARI) {T(n, k) = sum(j=0, k, sum(r=0, floor(n/2), (-1)^(k-j)*4^r* binomial(k, j)*binomial(r+(j-1)/2, r)*binomial(j, n-2*r) ))}; \\ G. C. Greubel, May 23 2019

(MAGMA) [[(&+[ (&+[ Round((-1)^(k-j)*4^r*Binomial(k, j)*Binomial(j, n-2*r)*Gamma(r+(j+1)/2)/(Factorial(r)*Gamma((j+1)/2))) : r in [0..Floor(n/2)]]) : j in [0..k]]) : k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 23 2019

(Sage) [[sum( sum( (-1)^(k-j)*4^r* binomial(k, j)*binomial(r+(j-1)/2, r)*binomial(j, n-2*r) for r in (0..floor(n/2))) for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 23 2019

CROSSREFS

Row sums are A116390. Diagonal sums are A116391.

Product of A007318 and this sequence is A116392.

Sequence in context: A071464 A071510 A110124 * A216344 A229762 A062110

Adjacent sequences:  A116386 A116387 A116388 * A116390 A116391 A116392

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Feb 12 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 06:30 EST 2019. Contains 329144 sequences. (Running on oeis4.)