The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116376 Number of partitions of n into parts with digital root = 6. 11
 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 3, 0, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 6, 0, 0, 5, 0, 0, 7, 0, 0, 7, 0, 0, 9, 0, 0, 9, 0, 0, 12, 0, 0, 11, 0, 0, 15, 0, 0, 15, 0, 0, 18, 0, 0, 19, 0, 0, 23, 0, 0, 23, 0, 0, 29, 0, 0, 29, 0, 0, 35, 0, 0, 37 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,24 COMMENTS a(n) = A114102(n) - A116371(n) - A116372(n) - A116373(n) - A116374(n) - A116375(n) - A116377(n) - A116378(n) - A114099(n). LINKS Eric Weisstein's World of Mathematics, Digital Root FORMULA a(n) = A035386(floor(n/3))*0^(n mod 3). G.f. product(j>=0, 1/(1 - x^(6+9*j)). - Robert Israel, Apr 13 2015 EXAMPLE a(30) = #{24+6, 15+15, 6+6+6+6+6} = 3. MAPLE N:= 1000: # to get a(1) to a(N) g:= mul(1/(1-x^(6+9*j)), j=0..floor((N-6)/9)): S:= series(g, x, N+1): seq(coeff(S, x, j), j=1..N); # Robert Israel, Apr 13 2015 CROSSREFS Cf. A010888. Cf. A147706. Sequence in context: A253189 A126030 A111373 * A165766 A102082 A030199 Adjacent sequences:  A116373 A116374 A116375 * A116377 A116378 A116379 KEYWORD nonn,base AUTHOR Reinhard Zumkeller, Feb 12 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 04:18 EST 2020. Contains 332195 sequences. (Running on oeis4.)