login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116156 a(n) = 5^n * n*(n + 1). 1
0, 10, 150, 1500, 12500, 93750, 656250, 4375000, 28125000, 175781250, 1074218750, 6445312500, 38085937500, 222167968750, 1281738281250, 7324218750000, 41503906250000, 233459472656250, 1304626464843750, 7247924804687500 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (15,-75,125).

FORMULA

G.f.: 10*x/(1-5*x)^3. - Vincenzo Librandi, Feb 28 2013

a(n) = 15*a(n-1) -75*a(n-2) +125*a(n-3). - Vincenzo Librandi, Feb 28 2013

a(n) = 10*A084902(n). - Bruno Berselli, Feb 28 2013

E.g.f.: 5*x*(2 + 5*x)*exp(5*x). - G. C. Greubel, May 10 2019

MATHEMATICA

Table[(n^2 + n) 5^n, {n, 0, 30}] (* or *) CoefficientList[Series[10 x/(1 - 5 x)^3, {x, 0, 30}], x](* Vincenzo Librandi, Feb 28 2013 *)

PROG

(MAGMA) [(n^2+n)*5^n: n in [0..30]]; /* or */ I:=[0, 10, 150]; [n le 3 select I[n] else 15*Self(n-1)-75*Self(n-2)+125*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013

(PARI) a(n)=(n^2+n)*5^n \\ Charles R Greathouse IV, Feb 28 2013

(Sage) [5^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019

(GAP) List([0..30], n-> 5^n*n*(n+1)) # G. C. Greubel, May 10 2019

CROSSREFS

Cf. A007758, A036289, A084902, A128796.

Sequence in context: A271467 A212471 A157867 * A224124 A212472 A025750

Adjacent sequences:  A116153 A116154 A116155 * A116157 A116158 A116159

KEYWORD

nonn,easy

AUTHOR

Mohammad K. Azarian, Apr 08 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 19:11 EDT 2019. Contains 324222 sequences. (Running on oeis4.)