%I #18 Feb 20 2022 18:15:58
%S 0,4,1,8,5,2,12,9,6,3,16,13,10,7,20,17,14,11,24,21,18,15,28,25,22,19,
%T 32,29,26,23,36,33,30,27,40,37,34,31,44,41,38,35,48,45,42,39,52,49,46,
%U 43,56,53,50,47,60,57,54,51,64,61,58,55,68,65,62,59,72,69,66,63,76,73,70
%N Permutation of natural numbers generated by 4-rowed array shown below.
%C 0 4 8 12 16 20 24 28 32 ... a(n) = 4n => A008586;
%C 1 5 9 13 17 21 25 29 33 ... a(n) = 4n+1 => A016813;
%C 2 6 10 14 18 22 26 30 34 ... a(n) = 4n+2 => A016825;
%C 3 7 11 15 19 23 27 31 35 ... a(n) = 4n+3 => A004767.
%D M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988
%D Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997
%H Harvey P. Dale, <a href="/A116080/b116080.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 1, -1).
%F For n > 0, a(n+5) = a(n) + 8 iff a(n+5)<a(n) : a(n+7) = a(n) + 8, iff a(n+7)<a(n): a(n+4k) = a(n) + 4k with k >= 1.
%F a(n)= a(n-1) + a(n-4) - a(n-5), n>=12. - _R. J. Mathar_, Apr 22 2010
%F G.f.: x^2*(4-3*x+7*x^2-3*x^3-7*x^4+13*x^5-10*x^6+3*x^9)/(1-x-x^4+x^5). - _Philippe Deléham_, Dec 02 2016
%t LinearRecurrence[{1,0,0,1,-1},{0,4,1,8,5,2,12,9,6,3,16},80] (* _Harvey P. Dale_, Feb 20 2022 *)
%Y Cf. A115302.
%K easy,nonn
%O 1,2
%A _Giovanni Teofilatto_, Mar 12 2006
%E Corrected (47 replaced by 41) by _R. J. Mathar_, Apr 22 2010