login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115994 Triangle read by rows: T(n,k) is number of partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))). 20

%I

%S 1,2,3,4,1,5,2,6,5,7,8,8,14,9,20,1,10,30,2,11,40,5,12,55,10,13,70,18,

%T 14,91,30,15,112,49,16,140,74,1,17,168,110,2,18,204,158,5,19,240,221,

%U 10,20,285,302,20,21,330,407,34,22,385,536,59,23,440,698,94,24,506,896,149,25

%N Triangle read by rows: T(n,k) is number of partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))).

%C Row n has floor(sqrt(n)) terms. Row sums yield A000041. Column 2 yields A006918. sum(k*T(n,k),k=1..floor(sqrt(n)))=A115995.

%C T(n,k) is number of partitions of n-k^2 into parts of 2 kinds with at most k of each kind.

%C Successive columns approach closer and closer to A000712. - _N. J. A. Sloane_, Mar 10 2007

%D G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).

%D G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

%D E. R. Canfield, From recursions to asymptotics: Durfee and dilogarithmic deductions, Advances in Applied Mathematics, Volume 34, Issue 4, May 2005, Pages 768-797

%D E. R. Canfield, S. Corteel, C. D. Savage, Electronic Journal of Combinatorics 5 (1998), #R32; http://www.emis.ams.org/journals/EJC/Volume_5/PDF/v5i1r32.pdf

%D S. B. Ekhad, D. Zeilberger, A Quick Empirical Reproof of the Asymptotic Normality of the Hirsch Citation Index (First proved by Canfield, Corteel, and Savage), arXiv preprint arXiv:1411.0002, 2014.

%H Alois P. Heinz, <a href="/A115994/b115994.txt">Rows n = 1..620, flattened</a>

%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, 2009, page 45

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DurfeeSquare.html">Durfee Square.</a>

%F G.f.: G(t,q) = sum(t^k*q^(k^2)/product((1-q^j)^2,j=1..k), k=1..infinity).

%F T(n,k) = Sum_{i=0}^{n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.

%e T(5,2) = 2 because the only partitions of 5 having Durfee square of size 2 are [3,2] and [2,2,1]; the other five partitions ([5], [4,1], [3,1,1], [2,1,1,1] and [1,1,1,1,1]) have Durfee square of size 1.

%e Triangle starts:

%e 1;

%e 2;

%e 3;

%e 4, 1;

%e 5, 2;

%e 6, 5;

%e 7, 8;

%e 8, 14;

%e 9, 20, 1;

%e ...

%p g:=sum(t^k*q^(k^2)/product((1-q^j)^2,j=1..k),k=1..40): gser:=series(g,q=0,32): for n from 1 to 27 do P[n]:=coeff(gser,q^n) od: for n from 1 to 27 do seq(coeff(P[n],t^j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form

%p # second Maple program

%p b:= proc(n, i) option remember;

%p `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))

%p end:

%p T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):

%p seq(seq(T(n, k), k=1..floor(sqrt(n))), n=1..30); # _Alois P. Heinz_, Apr 09 2012

%t Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[ Series[x^(n^2)/Product[1-x^i,{i,1,n}]^2,{x,0,nn}],x],{n,1,10}]],1]] //Grid (* _Geoffrey Critzer_, Sep 27 2013 *)

%Y For another version see A115720. Row lengths A000196.

%Y Cf. A115995, A115721, A115722, A008284, A006918.

%K nonn,tabf

%O 1,2

%A _Emeric Deutsch_, Feb 11 2006

%E Edited and verified by _Franklin T. Adams-Watters_ Mar 11 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 23:11 EST 2014. Contains 252240 sequences.