login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115994 Triangle read by rows: T(n,k) is number of partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))). 40
1, 2, 3, 4, 1, 5, 2, 6, 5, 7, 8, 8, 14, 9, 20, 1, 10, 30, 2, 11, 40, 5, 12, 55, 10, 13, 70, 18, 14, 91, 30, 15, 112, 49, 16, 140, 74, 1, 17, 168, 110, 2, 18, 204, 158, 5, 19, 240, 221, 10, 20, 285, 302, 20, 21, 330, 407, 34, 22, 385, 536, 59, 23, 440, 698, 94, 24, 506, 896, 149, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row n has floor(sqrt(n)) terms. Row sums yield A000041. Column 2 yields A006918. sum(k*T(n,k),k=1..floor(sqrt(n)))=A115995.

T(n,k) is number of partitions of n-k^2 into parts of 2 kinds with at most k of each kind.

The limit of the diagonals is A000712 (partitions into parts of two kinds). In particular, if 0<=m<=n, T(n(n+1)/2 + m, n) = A000712(m). These partitions in this range can be viewed as an equilateral right triangle of side n, with one partition appended on the top (at the left) and another appended on the right. - Franklin T. Adams-Watters, Jan 11 2006

Successive columns approach closer and closer to A000712. - N. J. A. Sloane, Mar 10 2007

REFERENCES

G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).

G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

LINKS

Alois P. Heinz, Rows n = 1..620, flattened

E. R. Canfield, From recursions to asymptotics: Durfee and dilogarithmic deductions, Advances in Applied Mathematics, Volume 34, Issue 4, May 2005, Pages 768-797

E. R. Canfield, S. Corteel, C. D. Savage, Durfee Polynomials, Electronic Journal of Combinatorics 5 (1998), #R32.

S. B. Ekhad, D. Zeilberger, A Quick Empirical Reproof of the Asymptotic Normality of the Hirsch Citation Index (First proved by Canfield, Corteel, and Savage), arXiv preprint arXiv:1411.0002, 2014.

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, page 45

Eric Weisstein's World of Mathematics, Durfee Square.

FORMULA

G.f.: sum(k>=1, t^k*q^(k^2)/product(j=1..k, (1-q^j)^2 ) ).

T(n,k) = Sum_{i=0}^{n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.

EXAMPLE

T(5,2) = 2 because the only partitions of 5 having Durfee square of size 2 are [3,2] and [2,2,1]; the other five partitions ([5], [4,1], [3,1,1], [2,1,1,1] and [1,1,1,1,1]) have Durfee square of size 1.

Triangle starts:

  1;

  2;

  3;

  4,  1;

  5,  2;

  6,  5;

  7,  8;

  8, 14;

  9, 20,  1;

  ...

MAPLE

g:=sum(t^k*q^(k^2)/product((1-q^j)^2, j=1..k), k=1..40): gser:=series(g, q=0, 32): for n from 1 to 27 do P[n]:=coeff(gser, q^n) od: for n from 1 to 27 do seq(coeff(P[n], t^j), j=1..floor(sqrt(n))) od; # yields sequence in triangular form

# second Maple program:

b:= proc(n, i) option remember;

      `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))

    end:

T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):

seq(seq(T(n, k), k=1..floor(sqrt(n))), n=1..30); # Alois P. Heinz, Apr 09 2012

MATHEMATICA

Map[Select[#, #>0&]&, Drop[Transpose[Table[CoefficientList[ Series[x^(n^2)/Product[1-x^i, {i, 1, n}]^2, {x, 0, nn}], x], {n, 1, 10}]], 1]] //Grid (* Geoffrey Critzer, Sep 27 2013 *)

b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[T[n, k], {n, 1, 30}, {k, 1, Sqrt[n]}] // Flatten (* Jean-Fran├žois Alcover, Dec 25 2015, after Alois P. Heinz *)

CROSSREFS

For another version see A115720. Row lengths A000196.

Cf. A115995, A115721, A115722, A008284, A006918.

Sequence in context: A179547 A023133 A026280 * A276951 A071437 A243713

Adjacent sequences:  A115991 A115992 A115993 * A115995 A115996 A115997

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Feb 11 2006

EXTENSIONS

Edited and verified by Franklin T. Adams-Watters, Mar 11 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 30 14:57 EDT 2020. Contains 337439 sequences. (Running on oeis4.)