The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115969 Expansion of 1/(2*sqrt(1-6*x+x^2) - 1). 1
 1, 6, 44, 336, 2600, 20232, 157864, 1233528, 9646328, 75470472, 590627208, 4623006744, 36189493080, 283315538664, 2218082213544, 17365909807416, 135964585370552, 1064534233678920, 8334838664902600, 65258529915843672, 510950805474456344, 4000571712415431336 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA G.f.: A(x)^2/(2*A(x) - A(x)^2) where A(x) is the g.f. of the central Delannoy numbers A001850. D-finite with recurrence: 3*n*a(n) + 3*(9-14*n)*a(n-1) + (151*n-225)*a(n-2) + 12*(9-4*n)*a(n-3) + 4*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 14 2011 a(n) ~ (1/3 + 2/sqrt(33)) * (4+2*sqrt(33)/3)^n. - Vaclav Kotesovec, Feb 01 2014 MATHEMATICA CoefficientList[Series[1/(2*Sqrt[1-6*x+x^2]-1), {x, 0, 30}], x] (* Vaclav Kotesovec, Feb 01 2014 *) PROG (PARI) my(x='x+O('x^30)); Vec(1/(2*sqrt(1-6*x+x^2)-1)) \\ G. C. Greubel, May 05 2019 (MAGMA) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(2*Sqrt(1-6*x+x^2)-1) )); // G. C. Greubel, May 05 2019 (Sage) (1/(2*sqrt(1-6*x+x^2)-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019 CROSSREFS Sequence in context: A227665 A102591 A114935 * A082412 A108452 A005591 Adjacent sequences:  A115966 A115967 A115968 * A115970 A115971 A115972 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 03 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 19:12 EST 2020. Contains 338891 sequences. (Running on oeis4.)