This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115969 Expansion of 1/(2*sqrt(1-6*x+x^2) - 1). 1
 1, 6, 44, 336, 2600, 20232, 157864, 1233528, 9646328, 75470472, 590627208, 4623006744, 36189493080, 283315538664, 2218082213544, 17365909807416, 135964585370552, 1064534233678920, 8334838664902600, 65258529915843672, 510950805474456344, 4000571712415431336 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA G.f.: A(x)^2/(2*A(x) - A(x)^2) where A(x) is the g.f. of the central Delannoy numbers A001850. Conjecture: 3*n*a(n) + 3*(9-14*n)*a(n-1) + (151*n-225)*a(n-2) + 12*(9-4*n)*a(n-3) + 4*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 14 2011 a(n) ~ (1/3 + 2/sqrt(33)) * (4+2*sqrt(33)/3)^n. - Vaclav Kotesovec, Feb 01 2014 MATHEMATICA CoefficientList[Series[1/(2*Sqrt[1-6*x+x^2]-1), {x, 0, 30}], x] (* Vaclav Kotesovec, Feb 01 2014 *) PROG (PARI) my(x='x+O('x^30)); Vec(1/(2*sqrt(1-6*x+x^2)-1)) \\ G. C. Greubel, May 05 2019 (MAGMA) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(2*Sqrt(1-6*x+x^2)-1) )); // G. C. Greubel, May 05 2019 (Sage) (1/(2*sqrt(1-6*x+x^2)-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 05 2019 CROSSREFS Sequence in context: A227665 A102591 A114935 * A082412 A108452 A005591 Adjacent sequences:  A115966 A115967 A115968 * A115970 A115971 A115972 KEYWORD easy,nonn AUTHOR Paul Barry, Feb 03 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)