

A115961


a(n)=least number having exactly n distinct prime factors, the largest of which is greater than or equal to sqrt(a(n)).


5



2, 6, 42, 930, 44310, 5338410, 902311410, 260630159790, 94084209188970, 49770436899273090, 41856930884959119930, 40224510201386387907030, 55067354465876062759959510, 92568222856398333359120816010
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..14.


FORMULA

a(n)=y*(smallest prime that is larger than y), where y is the product of first n1 consecutive primes.
a(n) = (n1)# * NextPrime((n1)#). a(n) = A002110(n1) * NextPrime(A002110(n1)). E.g. a(15) = 14# * 13082761331670077 = (2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43) + 13082761331670077, since 13082761331670077 = 14# + 47 is the least prime > 14#.  Jonathan Vos Post, Feb 13 2006


EXAMPLE

a(3)=42; indeed, 42=2*3*7, 7>sqrt(42) and 2*3*5 does not qualify because
5<sqrt(30).


MAPLE

a:=n>product(ithprime(j), j=1..n1)*nextprime(product(ithprime(j), j=1..n1)): seq(a(n), n=1..16);


CROSSREFS

Cf. A115956, A115957, A115958, A115959, A115960.
Cf. A002110.
Sequence in context: A276453 A152479 A250309 * A123137 A014117 A242927
Adjacent sequences: A115958 A115959 A115960 * A115962 A115963 A115964


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Feb 02 2006


STATUS

approved



