login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115944 Number of partitions of n into distinct factorials. 17
1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0

COMMENTS

a(A115944(n)) > 0; a(A115944(n)) = 0;

a(A115647(n)) > 0;

what is the smallest n such that a(n) > 1?.

No such n exists as 0 <= a(n) <= 1, cf. formula;

a(A059590(n)) = 1. - Reinhard Zumkeller, Dec 04 2011

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Index entries for sequences related to factorial numbers

FORMULA

G.f.: Product_{j>=1} (1 + x^(j!)). - Emeric Deutsch, Apr 06 2006

a(n! + k) = a(k) for k: 0 <= k < (n-1)! and a(n! + k)=0 for k: (n-1)! <= k < n!.

a(n! + k) = 0 for k: (n-1)! <= k < n!.

EXAMPLE

a(32)=1 because we have [24,6,2].

MAPLE

g:=product(1+x^(j!), j=1..7): gser:=series(g, x=0, 125): seq(coeff(gser, x, n), n=1..122); # Emeric Deutsch, Apr 06 2006

MATHEMATICA

max = 7; f[x_] := Product[ 1+x^(j!), {j, 1, max}]; A115944 = Take[ CoefficientList[ Series[ f[x], {x, 0, max!}], x], 106] (* Jean-Fran├žois Alcover, Dec 28 2011, after Emeric Deutsch *)

PROG

(Haskell)

a115944 = p (tail a000142_list) where

   p _      0             = 1

   p (f:fs) m | m < f     = 0

              | otherwise = p fs (m - f) + p fs m

-- Reinhard Zumkeller, Dec 04 2011

CROSSREFS

Cf. A064986.

Cf. A197183.

Sequence in context: A285498 A285504 A130093 * A166446 A103368 A055132

Adjacent sequences:  A115941 A115942 A115943 * A115945 A115946 A115947

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Feb 02 2006

EXTENSIONS

Offset changed and initial a(0)=1 added by Reinhard Zumkeller, Dec 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 02:26 EDT 2021. Contains 343059 sequences. (Running on oeis4.)