

A115944


Number of partitions of n into distinct factorials.


17



1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0


COMMENTS

a(A115944(n)) > 0; a(A115944(n)) = 0;
a(A115647(n)) > 0;
what is the smallest n such that a(n) > 1?.
No such n exists as 0 <= a(n) <= 1, cf. formula;
a(A059590(n)) = 1.  Reinhard Zumkeller, Dec 04 2011


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Index entries for sequences related to factorial numbers


FORMULA

G.f.: Product_{j>=1} (1 + x^(j!)).  Emeric Deutsch, Apr 06 2006
a(n! + k) = a(k) for k: 0 <= k < (n1)! and a(n! + k)=0 for k: (n1)! <= k < n!.
a(n! + k) = 0 for k: (n1)! <= k < n!.


EXAMPLE

a(32)=1 because we have [24,6,2].


MAPLE

g:=product(1+x^(j!), j=1..7): gser:=series(g, x=0, 125): seq(coeff(gser, x, n), n=1..122); # Emeric Deutsch, Apr 06 2006


MATHEMATICA

max = 7; f[x_] := Product[ 1+x^(j!), {j, 1, max}]; A115944 = Take[ CoefficientList[ Series[ f[x], {x, 0, max!}], x], 106] (* JeanFrançois Alcover, Dec 28 2011, after Emeric Deutsch *)


PROG

(Haskell)
a115944 = p (tail a000142_list) where
p _ 0 = 1
p (f:fs) m  m < f = 0
 otherwise = p fs (m  f) + p fs m
 Reinhard Zumkeller, Dec 04 2011


CROSSREFS

Cf. A064986.
Cf. A197183.
Sequence in context: A285498 A285504 A130093 * A166446 A103368 A055132
Adjacent sequences: A115941 A115942 A115943 * A115945 A115946 A115947


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Feb 02 2006


EXTENSIONS

Offset changed and initial a(0)=1 added by Reinhard Zumkeller, Dec 04 2011


STATUS

approved



