login
Numbers k such that k^k contains a pandigital substring.
6

%I #15 Oct 18 2024 11:35:24

%S 125,132,147,162,163,167,169,176,186,188,192,197,209,215,218,222,223,

%T 237,247,258,259,269,270,273,274,275,277,284,288,294,297,301,302,309,

%U 316,332,359,361,362,377,382,390,393,396,398,401,404,407,413,419,425

%N Numbers k such that k^k contains a pandigital substring.

%H Harvey P. Dale, <a href="/A115938/b115938.txt">Table of n, a(n) for n = 1..3000</a>

%e 125^125 = 12994...59(7369285104)69...8125.

%t Select[Range[450],Length[Select[Partition[IntegerDigits[#^#],10,1],Sort[#]=={0,1,2,3,4,5,6,7,8,9}&]]>0&] (* _Harvey P. Dale_, Oct 18 2024 *)

%o (Python)

%o def haspan(s): return any(len(set(s[i:i+10]))==10 for i in range(len(s)-9))

%o print([m for m in range(500) if haspan(str(m**m))]) # _Michael S. Branicky_, Feb 28 2021

%Y Cf. A115933, A115934, A115935, A115936, A115937.

%K nonn,base

%O 1,1

%A _Giovanni Resta_, Feb 06 2006