%I #11 Nov 03 2012 15:39:16
%S 1,2,5,10,26,42,118,171,389,692,1442,1854,5534,6895,11910,21116,44278,
%T 52568,118734,138670,300326,492507,728514,829244,2167430,2987124,
%U 4167602,6092588,11308432,12554900,29925267,33023589,57950313,81424281,106214784,148101088
%N Number of partitions with maximum rectangle <= n.
%C A partition has maximum rectangle <= n iff it is a subpartition of row n of A010766.
%H Alois P. Heinz, <a href="/A115725/b115725.txt">Table of n, a(n) for n = 0..100</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FerrersDiagram.html">Ferrers Diagram.</a>
%F a(n) = subpart([<floor(n/k)]). The subpart function is A115728 (or A115729), [<floor(n/k)>] is row n of A010766.
%F a(n) = Sum_{k>=0} A182114(k,n). - _Alois P. Heinz_, Nov 02 2012
%e The 10 partitions with maximum rectangle <= 3: 0: []; 1: [1]; 2: [2], [1^2], [2,1]; 3: [3], [1^3], [3,1], [2,1^2], [3,1^2].
%Y Cf. A115728, A115729, A115724, A010766.
%K nonn
%O 0,2
%A _Franklin T. Adams-Watters_, Mar 11 2006