%I #16 Feb 14 2022 18:51:31
%S 1,0,2,0,1,2,0,0,2,3,0,0,1,4,2,0,0,0,5,2,4,0,0,0,3,4,6,2,0,0,0,1,4,11,
%T 2,4,0,0,0,0,3,14,4,6,3,0,0,0,0,1,15,6,12,4,4,0,0,0,0,0,13,8,18,9,6,2,
%U 0,0,0,0,0,8,10,25,14,12,2,6,0,0,0,0,0,4,9,30,22,20,4,10,2
%N Table of partitions of n with maximum rectangle k.
%C T(n,k)=0 if n > A006218(k).
%H Alois P. Heinz, <a href="/A115723/b115723.txt">Rows n = 1..141, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FerrersDiagram.html">Ferrers Diagram.</a>
%F Sum_{k=1..n} k * T(n,k) = A182099(n).
%e The table starts:
%e 1;
%e 0, 2;
%e 0, 1, 2;
%e 0, 0, 2, 3;
%e 0, 0, 1, 4, 2;
%e 0, 0, 0, 5, 2, 4;
%e 0, 0, 0, 3, 4, 6, 2;
%e 0, 0, 0, 1, 4, 11, 2, 4;
%e 0, 0, 0, 0, 3, 14, 4, 6, 3;
%e 0, 0, 0, 0, 1, 15, 6, 12, 4, 4;
%e ...
%Y Cf. A000005 (diagonal), A000041 (row sums), A061017 (column indices of leftmost nonzero elements), A115724 (column sums), A115727, A115728, A006218, A182099.
%K nonn,tabl,look
%O 1,3
%A _Franklin T. Adams-Watters_, Mar 11 2006