login
A115521
Decimal expansion of (Glaisher^12/(2^(4/3) * Pi * e^EulerGamma))^(Pi^2/8).
1
1, 5, 1, 9, 0, 9, 6, 6, 3, 3, 4, 4, 2, 1, 9, 8, 5, 3, 1, 4, 5, 8, 0, 0, 7, 3, 4, 5, 8, 6, 8, 4, 1, 1, 5, 6, 8, 8, 4, 3, 8, 9, 0, 3, 4, 3, 2, 1, 7, 0, 8, 4, 2, 3, 1, 6, 6, 8, 1, 6, 3, 3, 7, 2, 1, 9, 8, 7, 0, 6, 7, 2, 4, 3, 4, 2, 7, 1, 2, 2, 7, 4, 6, 1, 5, 4, 2, 3, 5, 0, 5, 8, 3, 1, 8, 6, 2, 5, 3, 6, 8, 5, 9, 2, 9
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 135.
LINKS
J. W. Glaisher, On the constant which occurs in the formula for 1^1*2^2*3^3*...n^n, Messenger of Mathematics, Vol. 24 (1894-95), pp. 1-16.
Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant.
FORMULA
Equals Product_{k>=1} (2*k-1)^(1/(2*k-1)^2). - Amiram Eldar, Jun 25 2021
EXAMPLE
1.5190966334421985314...
MATHEMATICA
RealDigits[(Glaisher^12/(2^(4/3)Pi E^EulerGamma))^(Pi^2/8), 10, 100][[1]] (* Vaclav Kotesovec, Aug 15 2015 after Eric W. Weisstein *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Jan 25 2006
EXTENSIONS
Offset corrected by Amiram Eldar, Jun 25 2021
STATUS
approved