%I
%S 1,1,5,6,16,20,41,51,90,111,177,216,321,387,546,651,882,1041,1366,
%T 1597,2042,2367,2962,3407,4187,4782,5787,6567,7842,8847,10443,11718,
%U 13692,15288,17703,19677,22603,25018,28532,31458,35644,39158,44108,48294
%N <h[d+1,d1],s[d,d]*s[d,d]*s[d,d]> where h[d+1,d1] is a homogeneous symmetric function, s[d,d] is a Schur function indexed by two parts, * represents the Kronecker product and <, > is the standard scalar product on symmetric functions.
%F G.f.: x^2/((1x)*(1x^2)^4*(1x^3))
%t Drop[CoefficientList[Series[x^2/((1x)(1x^2)^4(1x^3)),{x,0,50}],x],2] (* _Harvey P. Dale_, Aug 24 2011 *)
%Y Cf. A115375, A082424, A008763, A082437.
%K nonn
%O 2,3
%A _Mike Zabrocki_, Jan 21 2006
