login
A115376
<h[d+1,d-1],s[d,d]*s[d,d]*s[d,d]> where h[d+1,d-1] is a homogeneous symmetric function, s[d,d] is a Schur function indexed by two parts, * represents the Kronecker product and <, > is the standard scalar product on symmetric functions.
2
1, 1, 5, 6, 16, 20, 41, 51, 90, 111, 177, 216, 321, 387, 546, 651, 882, 1041, 1366, 1597, 2042, 2367, 2962, 3407, 4187, 4782, 5787, 6567, 7842, 8847, 10443, 11718, 13692, 15288, 17703, 19677, 22603, 25018, 28532, 31458, 35644, 39158, 44108, 48294
OFFSET
2,3
LINKS
FORMULA
G.f.: x^2 / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 7*a(n-4) + 2*a(n-5) + 8*a(n-6) + 2*a(n-7) - 7*a(n-8) - 3*a(n-9) + 4*a(n-10) + a(n-11) - a(n-12) for n>11. - Colin Barker, May 10 2019
MATHEMATICA
Drop[CoefficientList[Series[x^2/((1-x)(1-x^2)^4(1-x^3)), {x, 0, 50}], x], 2] (* Harvey P. Dale, Aug 24 2011 *)
PROG
(PARI) Vec(x^2 / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)) + O(x^50)) \\ Colin Barker, May 10 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mike Zabrocki, Jan 21 2006
STATUS
approved