login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115376 <h[d+1,d-1],s[d,d]*s[d,d]*s[d,d]> where h[d+1,d-1] is a homogeneous symmetric function, s[d,d] is a Schur function indexed by two parts, * represents the Kronecker product and <, > is the standard scalar product on symmetric functions. 2
1, 1, 5, 6, 16, 20, 41, 51, 90, 111, 177, 216, 321, 387, 546, 651, 882, 1041, 1366, 1597, 2042, 2367, 2962, 3407, 4187, 4782, 5787, 6567, 7842, 8847, 10443, 11718, 13692, 15288, 17703, 19677, 22603, 25018, 28532, 31458, 35644, 39158, 44108, 48294 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

LINKS

Colin Barker, Table of n, a(n) for n = 2..1000

Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-7,2,8,2,-7,-3,4,1,-1).

FORMULA

G.f.: x^2 / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)).

a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 7*a(n-4) + 2*a(n-5) + 8*a(n-6) + 2*a(n-7) - 7*a(n-8) - 3*a(n-9) + 4*a(n-10) + a(n-11) - a(n-12) for n>11. - Colin Barker, May 10 2019

MATHEMATICA

Drop[CoefficientList[Series[x^2/((1-x)(1-x^2)^4(1-x^3)), {x, 0, 50}], x], 2]  (* Harvey P. Dale, Aug 24 2011 *)

PROG

(PARI) Vec(x^2 / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)) + O(x^50)) \\ Colin Barker, May 10 2019

CROSSREFS

Cf. A115375, A082424, A008763, A082437.

Sequence in context: A026547 A081283 A058567 * A076650 A068408 A186696

Adjacent sequences:  A115373 A115374 A115375 * A115377 A115378 A115379

KEYWORD

nonn,easy

AUTHOR

Mike Zabrocki, Jan 21 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 06:39 EDT 2019. Contains 328292 sequences. (Running on oeis4.)