login
A115353
The mode of the digits of n (using smallest mode if multimodal).
4
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 0, 0, 0
OFFSET
0,3
COMMENTS
a(101)=1 and A054054(101)=0, but all previous terms are equivalent.
LINKS
EXAMPLE
a(12)=1 because 1, 2, the digits of 12, each occur the same number of times and 1 is the smaller of the two modes.
a(101)=1 because 1 is the unique mode of 1, 0, 1 (occurring twice while 0 appears only once).
MATHEMATICA
a[n_] := Min[Commonest[IntegerDigits[n]]]; Array[a, 105, 0] (* Stefano Spezia, Jan 08 2023 *)
PROG
(MATLAB)
function nth_term=A115353(n)
nth_term=mode((num2str(n)-'0'));
end
sequence = arrayfun(@A115353, linspace(0, 105, 106))
% Bence Bernáth, Jan 06 2023
(Python)
from statistics import mode
def a(n): return int(mode(sorted(str(n))))
print([a(n) for n in range(105)]) # Michael S. Branicky, Jan 08 2023
CROSSREFS
Cf. A054054 (Smallest digit of n).
Sequence in context: A085124 A252648 A054054 * A031298 A004428 A004429
KEYWORD
base,nonn
AUTHOR
Rick L. Shepherd, Jan 21 2006
STATUS
approved