login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115343 Products of 9 distinct primes. 7
223092870, 281291010, 300690390, 340510170, 358888530, 363993630, 380570190, 397687290, 406816410, 417086670, 434444010, 455885430, 458948490, 481410930, 485555070, 497668710, 504894390, 512942430, 514083570, 531990690, 538047510, 547777230, 551861310 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1045 terms from Vincenzo Librandi and Chai Wah Wu)

EXAMPLE

514083570 is in the sequence as it is equal to 2*3*5*7*11*13*17*19*53.

MAPLE

N:= 10^9: # to get all terms < N

n0:= mul(ithprime(i), i=1..8):

Primes:= select(isprime, [$1..floor(N/n0)]):

nPrimes:= nops(Primes):

for i from 1 to 9 do

  for j from 1 to nPrimes do

    M[i, j]:= convert(Primes[1..min(j, i)], `*`);

od od:

A:= {}:

for i9 from 9 to nPrimes do

  m9:= Primes[i9];

for i8 in select(t -> M[7, t-1]*Primes[t]*m9 <= N, [$8..i9-1]) do

  m8:= m9*Primes[i8];

for i7 in select(t -> M[6, t-1]*Primes[t]*m8 <= N, [$7..i8-1]) do

  m7:= m8*Primes[i7];

for i6 in select(t -> M[5, t-1]*Primes[t]*m7 <= N, [$6..i7-1]) do

  m6:= m7*Primes[i6];

for i5 in select(t -> M[4, t-1]*Primes[t]*m6 <= N, [$5..i6-1]) do

  m5:= m6*Primes[i5];

for i4 in select(t -> M[3, t-1]*Primes[t]*m5 <= N, [$4..i5-1]) do

  m4:= m5*Primes[i4];

for i3 in select(t -> M[2, t-1]*Primes[t]*m4 <= N, [$3..i4-1]) do

  m3:= m4*Primes[i3];

for i2 in select(t -> M[1, t-1]*Primes[t]*m3 <= N, [$2..i3-1]) do

  m2:= m3*Primes[i2];

for i1 in select(t -> Primes[t]*m2 <= N, [$1..i2-1]) do

  A:= A union {m2*Primes[i1]};

od od od od od od od od od:

A; # Robert Israel, Sep 02 2014

MATHEMATICA

Module[{n=6*10^8, k}, k=PrimePi[n/Times@@Prime[Range[8]]]; Select[ Union[ Times@@@ Subsets[Prime[Range[k]], {9}]], #<=n&]](* Harvey P. Dale with suggestions from Jean-François Alcover, Sep 03 2014 *)

n = 10^9; n0 = Times @@ Prime[Range[8]]; primes = Select[Range[Floor[n/n0]], PrimeQ]; nPrimes = Length[primes]; Do[M[i, j] = Times @@ primes[[1 ;; Min[j, i]]], {i, 1, 9}, {j, 1, nPrimes}]; A = {};

Do[m9 = primes[[i9]];

Do[m8 = m9*primes[[i8]];

Do[m7 = m8*primes[[i7]];

Do[m6 = m7*primes[[i6]];

Do[m5 = m6*primes[[i5]];

Do[m4 = m5*primes[[i4]];

Do[m3 = m4*primes[[i3]];

Do[m2 = m3*primes[[i2]];

Do[A = A ~Union~ {m2*primes[[i1]]},

{i1, Select[Range[1, i2-1], primes[[#]]*m2 <= n &]}],

{i2, Select[Range[2, i3-1], M[1, #-1]*primes[[#]]*m3 <= n &]}],

{i3, Select[Range[3, i4-1], M[2, #-1]*primes[[#]]*m4 <= n &]}],

{i4, Select[Range[4, i5-1], M[3, #-1]*primes[[#]]*m5 <= n &]}],

{i5, Select[Range[5, i6-1], M[4, #-1]*primes[[#]]*m6 <= n &]}],

{i6, Select[Range[6, i7-1], M[5, #-1]*primes[[#]]*m7 <= n &]}],

{i7, Select[Range[7, i8-1], M[6, #-1]*primes[[#]]*m8 <= n &]}],

{i8, Select[Range[8, i9-1], M[7, #-1]*primes[[#]]*m9 <= n &]}],

{i9, 9, nPrimes}];

A (* Jean-François Alcover, Sep 03 2014, translated and adapted from Robert Israel's Maple program *)

PROG

(Python)

from operator import mul

from functools import reduce

from sympy import nextprime, sieve

from itertools import combinations

n = 190

m = 9699690*nextprime(n-1)

A115343 = []

for x in combinations(sieve.primerange(1, n), 9):

....y = reduce(mul, (d for d in x))

....if y < m:

........A115343.append(y)

A115343 = sorted(A115343) # Chai Wah Wu, Sep 02 2014

(PARI) is(n)=omega(n)==9 && bigomega(n)==9 \\ Hugo Pfoertner, Dec 18 2018

CROSSREFS

Cf. A000040, A006881, A007304, A046386, A046387, A067885, A123321, A123322, A115343, A281222.

Sequence in context: A231093 A262559 A199498 * A258364 A046327 A206044

Adjacent sequences:  A115340 A115341 A115342 * A115344 A115345 A115346

KEYWORD

nonn,easy

AUTHOR

Jonathan Vos Post, Mar 06 2006

EXTENSIONS

Corrected and extended by Don Reble, Mar 09 2006

More terms and corrected b-file from Chai Wah Wu, Sep 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 20:39 EST 2020. Contains 338854 sequences. (Running on oeis4.)