This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115335 a(0) = 3, a(1) = 5, a(2) = 1, and a(n) = (2^(1 + n) - 11*(-1)^n)/3 for n > 2. 3

%I

%S 3,5,1,9,7,25,39,89,167,345,679,1369,2727,5465,10919,21849,43687,

%T 87385,174759,349529,699047,1398105,2796199,5592409,11184807,22369625,

%U 44739239,89478489,178956967,357913945,715827879,1431655769,2863311527,5726623065,11453246119

%N a(0) = 3, a(1) = 5, a(2) = 1, and a(n) = (2^(1 + n) - 11*(-1)^n)/3 for n > 2.

%H G. C. Greubel, <a href="/A115335/b115335.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,2).

%F a(n) = 2*abs((1/2)*(-1 + (-2)^n) - (2/3)*(2 + (-2)^n)*A057427(n)).

%F From _Colin Barker_, Jan 04 2013: (Start)

%F a(n) = a(n-1) + 2*a(n-2) for n > 4.

%F G.f.: (4*x^4 + 2*x^3 + 10*x^2 - 2*x - 3) / ((x + 1)*(2*x - 1)). (End)

%F E.g.f.: (18 + 3*x^2 - 11*exp(-x) + 2*exp(2*x))/3. - _Franck Maminirina Ramaharo_, Nov 23 2018

%p seq(coeff(series((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1)),x,n+1), x, n), n = 0 .. 35); # _Muniru A Asiru_, Nov 23 2018

%t Join[{3,5,1},LinearRecurrence[{1,2},{9,7},40]] (* _Harvey P. Dale_, Jul 17 2014 *)

%o (Maxima) append([3, 5, 1], makelist((2^(1 + n) - 11*(-1)^n)/3, n, 3, 40)) /* _Franck Maminirina Ramaharo_, Nov 23 2018*/

%o (PARI) x='x+O('x^50); Vec((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1))) \\ _G. C. Greubel_, Nov 23 2018

%o (MAGMA) I:=[9,7]; [3,5,1] cat [n le 2 select I[n] else Self(n-1) + 2*Self(n-2): n in [1..45]]; // _G. C. Greubel_, Nov 23 2018

%o (Sage) s=((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1))).series(x,50); s.coefficients(x, sparse=False) # _G. C. Greubel_, Nov 23 2018

%o (GAP) a:=[3,5,1];; for n in [4..35] do a[n]:=(2^n-11*(-1)^(n-1))/3; od; a; # _Muniru A Asiru_, Nov 23 2018

%Y Cf. A115113, A115164.

%K nonn,easy

%O 0,1

%A _Roger L. Bagula_, Mar 06 2006

%E a(24) corrected, new name, and editing by _Colin Barker_ and _Joerg Arndt_, Jan 04 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 16:46 EDT 2019. Contains 324214 sequences. (Running on oeis4.)