login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp(x + 3/2*x^2).
7

%I #39 Apr 17 2023 16:30:23

%S 1,1,4,10,46,166,856,3844,21820,114076,703216,4125496,27331624,

%T 175849480,1241782816,8627460976,64507687696,478625814544,

%U 3768517887040,29614311872416,244419831433696,2021278543778656,17419727924101504

%N E.g.f.: exp(x + 3/2*x^2).

%C Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.

%C a(n) is also the number of square roots of any permutation in S_{3n} whose disjoint cycle decomposition consists of n cycles of length 3. - _Luis Manuel Rivera Martínez_, Feb 26 2015

%H Vincenzo Librandi, <a href="/A115327/b115327.txt">Table of n, a(n) for n = 0..200</a>

%H John Campbell, <a href="https://dmtcs.episciences.org/3210">A class of symmetric difference-closed sets related to commuting involutions</a>, Discrete Mathematics & Theoretical Computer Science, Vol 19 no. 1, 2017.

%H Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, <a href="http://arxiv.org/abs/1005.1531">On the number of mth roots of permutations</a>, arXiv:1005.1531 [math.CO], 2010-2011.

%H Jesús Leaños, Rutilo Moreno, and Luis Manuel Rivera-Martínez, <a href="http://ajc.maths.uq.edu.au/pdf/52/ajc_v52_p041.pdf">On the number of mth roots of permutations</a>, Australas. J. Combin. 52 (2012), 41-54, (Theorems 1 and 2).

%F Term-by-term square equals A115328 which has e.g.f.: exp(x/(1-3*x))/sqrt(1-9*x^2).

%F From _Paul Barry_, Apr 10 2009: (Start)

%F G.f.: 1/(1-x-3*x^2/(1-x-6*x^2/(1-x-9*x^2/(1-x-12*x^2/(1-... (continued fraction);

%F a(n) = a(n-1)+3*(n-1)*a(n-2). (End)

%F a(n) ~ exp(sqrt(n/3)-n/2-1/12)*3^(n/2)*n^(n/2)/sqrt(2). - _Vaclav Kotesovec_, Oct 19 2012

%F G.f.: 1/Q(0), where Q(k)= 1 + 3*x*k - x/(1 - 3*x*(k+1)/Q(k+1)); (continued fraction). - _Sergei N. Gladkovskii_, Apr 17 2013

%F a(n) = n!*Sum_{k=0..floor(n/2)}3^k/(2^k*k!*(n-2*k)!). - _Luis Manuel Rivera Martínez_, Feb 26 2015

%t Range[0, 20]! CoefficientList[Series[Exp[(x + 3 / 2 x^2)], {x, 0, 20}], x] (* _Vincenzo Librandi_, May 22 2013 *)

%o (PARI) a(n)=local(m=3);n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)),n)

%Y Column k=3 of A359762.

%Y Cf. A115328.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 20 2006