login
A115322
Triangle of coefficients of Pell polynomials.
0
1, 0, 2, 1, 0, 4, 0, 4, 0, 8, 1, 0, 12, 0, 16, 0, 6, 0, 32, 0, 32, 1, 0, 24, 0, 80, 0, 64, 0, 8, 0, 80, 0, 192, 0, 128, 1, 0, 40, 0, 240, 0, 448, 0, 256, 0, 10, 0, 160, 0, 672, 0, 1024, 0, 512, 1, 0, 60, 0, 560, 0, 1792, 0, 2304, 0, 1024, 0, 12, 0, 280, 0, 1792, 0, 4608, 0, 5120, 0, 2048
OFFSET
1,3
COMMENTS
Aside from signs, same as A053117.
LINKS
Eric Weisstein's World of Mathematics, Pell Polynomial
FORMULA
G.f. for n-th row is Fibonacci(n, 2*x).
EXAMPLE
1, 2*x, 1 + 4*x^2, 4*x + 8*x^3, 1 + 12*x^2 + 16*x^4, ...
MATHEMATICA
Flatten[Table[CoefficientList[Fibonacci[n, 2 x], x], {n, 0, 20}]] (* Emanuele Munarini, Dec 01 2017 *)
CROSSREFS
Cf. A053117.
Sequence in context: A214809 A363902 A137336 * A053117 A121448 A019094
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, Jan 20 2006
STATUS
approved