OFFSET
1,1
COMMENTS
a(n+1)/a(n) converges to Pi. Similar to sequence A085839 but with a simpler definition.
Subset of the Beatty sequence of Pi = A022844 = floor(n*Pi). Primes in this sequence include a(1) = 3, a(6) = 857, a(15) = 25541911. - Jonathan Vos Post, Jan 18 2006
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Beatty Sequence.
EXAMPLE
a(2) = floor(a(1)*Pi) = floor(3*Pi) = 9;
a(3) = floor(a(2)*Pi) = floor(9*Pi) = 28;
a(4) = floor(a(3)*Pi) = floor(28*Pi) = 87.
MAPLE
A[1]:= 3:
for n from 2 to 50 do A[n]:= floor(Pi*A[n-1]) od:
seq(A[i], i=1..50); # Robert Israel, Feb 07 2016
MATHEMATICA
a[1] = Floor[Pi]; a[n_] := a[n] = Floor[a[n - 1]*Pi]; Array[a, 25] (* Robert G. Wilson v, Jan 18 2006 *)
NestList[Floor[Pi #]&, 3, 30] (* Harvey P. Dale, Mar 30 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Jan 17 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jan 18 2006
STATUS
approved