login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115231 Primes p which cannot be written in the form 2^i + q^j where i >= 0, j >= 1, q = odd prime. 5
2, 3, 149, 331, 373, 509, 701, 757, 809, 877, 907, 997, 1019, 1087, 1259, 1549, 1597, 1619, 1657, 1759, 1777, 1783, 1867, 1973, 2293, 2377, 2503, 2579, 2683, 2789, 2843, 2879, 2909, 2999, 3119, 3163, 3181, 3187, 3299, 3343, 3433, 3539, 3643, 3697, 3739, 3779 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Union with A115232 gives all primes (A000040).

All terms > 3 are in A095842. - M. F. Hasler, Nov 20 2014

LINKS

David A. Corneth, Table of n, a(n) for n = 1..11532 (terms <= 10^6)

EXAMPLE

A000040(35) = 149 = 2^7+3*7 = 2^6+5*17 = 2^5+3*3*13 =

2^4+7*19 = 2^3+3*47 = 2^2+5*29 = 2^1+3*7*7 = 2^0+2*2*37, therefore 149 is a term (A115230(35)=0).

MATHEMATICA

maxp = 3779; Complement[pp = Prime[Range[PrimePi[maxp]]], Union[Sort[Reap[Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], Sow[p]], {i, 0, Log[2, maxp]//Ceiling}, {j, 1, Log[3, maxp]//Ceiling}, {q, Rest[pp]} ]][[2, 1]]]]] (* Jean-Fran├žois Alcover, Aug 03 2018 *)

PROG

(PARI) upto(n) = {my(pr = primes(primepi(n)), found = List(), s); for(i = 0, logint(n, 2), s = 2^i; forprime(q = 3, n - 2^i, for(j = 1, logint(n - 2^i, q),

listput(found, s + q^j)))); listsort(found, 1); setminus(Set(pr), Set(found))} \\ David A. Corneth, Aug 03 2018

CROSSREFS

Cf. A095842, A115230, A115232, A115233, A000079, A061345.

Sequence in context: A254787 A042073 A124236 * A042369 A042701 A246488

Adjacent sequences:  A115228 A115229 A115230 * A115232 A115233 A115234

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Jan 17 2006

EXTENSIONS

Recomputed (based on recomputation of A115230) by R. J. Mathar and Reinhard Zumkeller, Apr 29 2010.

Edited by N. J. A. Sloane, Apr 30 2010

2, 3 inserted by David A. Corneth, Aug 03 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 18:18 EST 2018. Contains 317214 sequences. (Running on oeis4.)