|
|
A115231
|
|
Primes p which cannot be written in the form 2^i + q^j where i >= 0, j >= 1, q = odd prime.
|
|
6
|
|
|
2, 3, 149, 331, 373, 509, 701, 757, 809, 877, 907, 997, 1019, 1087, 1259, 1549, 1597, 1619, 1657, 1759, 1777, 1783, 1867, 1973, 2293, 2377, 2503, 2579, 2683, 2789, 2843, 2879, 2909, 2999, 3119, 3163, 3181, 3187, 3299, 3343, 3433, 3539, 3643, 3697, 3739, 3779
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Union with A115232 gives all primes (A000040).
All terms > 3 are in A095842. - M. F. Hasler, Nov 20 2014
|
|
LINKS
|
David A. Corneth, Table of n, a(n) for n = 1..11532 (terms <= 10^6)
|
|
EXAMPLE
|
A000040(35) = 149 = 2^7+3*7 = 2^6+5*17 = 2^5+3*3*13 =
2^4+7*19 = 2^3+3*47 = 2^2+5*29 = 2^1+3*7*7 = 2^0+2*2*37, therefore 149 is a term (A115230(35)=0).
|
|
MATHEMATICA
|
maxp = 3779; Complement[pp = Prime[Range[PrimePi[maxp]]], Union[Sort[Reap[Do[p = 2^i + q^j; If[p <= maxp && PrimeQ[p], Sow[p]], {i, 0, Log[2, maxp]//Ceiling}, {j, 1, Log[3, maxp]//Ceiling}, {q, Rest[pp]} ]][[2, 1]]]]] (* Jean-François Alcover, Aug 03 2018 *)
|
|
PROG
|
(PARI) upto(n) = {my(pr = primes(primepi(n)), found = List(), s); for(i = 0, logint(n, 2), s = 2^i; forprime(q = 3, n - 2^i, for(j = 1, logint(n - 2^i, q),
listput(found, s + q^j)))); listsort(found, 1); setminus(Set(pr), Set(found))} \\ David A. Corneth, Aug 03 2018
|
|
CROSSREFS
|
Cf. A095842, A115230, A115232, A115233, A000079, A061345.
Sequence in context: A254787 A042073 A124236 * A042369 A328257 A042701
Adjacent sequences: A115228 A115229 A115230 * A115232 A115233 A115234
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Jan 17 2006
|
|
EXTENSIONS
|
Recomputed (based on recomputation of A115230) by R. J. Mathar and Reinhard Zumkeller, Apr 29 2010.
Edited by N. J. A. Sloane, Apr 30 2010
2, 3 inserted by David A. Corneth, Aug 03 2018
|
|
STATUS
|
approved
|
|
|
|