%I
%S 0,0,1,2,0,1,2,3,4,5,6,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,1,2,3,4,5,
%T 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
%U 30,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
%N Triangle read by rows: zeroth row is 0; to get row n >= 1, append next 2^n numbers to end of previous row.
%H Robert Israel, <a href="/A115218/b115218.txt">Table of n, a(n) for n = 0..10000</a>
%F From _Robert Israel_, Jan 02 2018: (Start)
%F G.f.: x^2/(1x)^2  (1x)^(1)*Sum_{n>=2} (2^n1)*x^(2^(n+1)n2).
%F a(n) = k if n = 2^m  m + k  1, 0 <= k <= 2^m2.
%F G.f. as triangle: (1y)^(2)*Sum_{n>=1} x^n*(y + (12^n)*y^(2^n1)+(2^n2)*y^(2^n)). (End)
%e Triangle begins:
%e 0
%e 0 1 2
%e 0 1 2 3 4 5 6
%e 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
%e ...
%p seq($0..2^n2, n=0..5); # _Robert Israel_, Jan 02 2018
%Y Cf. A126646 (length of nth row).
%K nonn,tabf
%O 0,4
%A _N. J. A. Sloane_, based on a suggestion from _Harrie Grondijs_, Mar 04 2006
