The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115195 Triangle of numbers, called Y(1,2), related to generalized Catalan numbers A062992(n) = C(2;n+1) = A064062(n+1). 7
 1, 2, 3, 4, 10, 13, 8, 28, 54, 67, 16, 72, 180, 314, 381, 32, 176, 536, 1164, 1926, 2307, 64, 416, 1488, 3816, 7668, 12282, 14589, 128, 960, 3936, 11568, 26904, 51468, 80646, 95235, 256, 2176, 10048, 33184, 86992, 189928, 351220, 541690, 636925, 512, 4864 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This triangle Y(1,2) appears in the totally asymmetric exclusion process for the (unphysical) values alpha=1, beta=2. See the Derrida et al. refs. given under A064094, where the triangle entries are called Y_{N,K} for given alpha and beta. The main diagonal (M=1) gives the generalized Catalan sequence C(2,n+1):=A064062(n+1). The diagonal sequences give A064062(n+1), 2*A084076, 4*A115194, 8*A115202, 16*A115203, 32*A115204 for n+1>= M=1,..,6. LINKS B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672. Wolfdieter Lang, First 10 rows. FORMULA G.f. m-th diagonal, m>=1: ((1 + 2*x*c(2*x))*(2*x*c(2*x))^m)/(2*x*(1+x)) with c(x) the o.g.f. of A000108 (Catalan). EXAMPLE Triangle begins:    1;    2,  3;    4, 10,  13;    8, 28,  54,  67;   16, 72, 180, 314, 381;   ... CROSSREFS Row sums give A084076. Sequence in context: A250112 A193775 A131120 * A095384 A177084 A115899 Adjacent sequences:  A115192 A115193 A115194 * A115196 A115197 A115198 KEYWORD nonn,easy,tabl,changed AUTHOR Wolfdieter Lang, Feb 23 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 11:38 EDT 2022. Contains 355985 sequences. (Running on oeis4.)