This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A115147 Eighth convolution of A115140. 4
 1, -8, 20, -16, 2, 0, 0, 0, -1, -8, -44, -208, -910, -3808, -15504, -62016, -245157, -961400, -3749460, -14567280, -56448210, -218349120, -843621600, -3257112960, -12570420330, -48507033744, -187187399448, -722477682080, -2789279908316, -10772391370048 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..1670 FORMULA O.g.f.: 1/c(x)^8 = P(9, x) - x*P(8, x)*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(9, x)= 1-7*x+15*x^2-10*x^3+x^4 and P(8, x)=1-6*x+10*x^2-4*x^3. a(n) = -C8(n-8), n>=8, with C8(n) = A003518(n+3) (eighth convolution of Catalan numbers). a(0)=1, a(1)=-8, a(2)=30, a(3)=-16, a(4)=2, a(5)=a(6)=a(7)=0. [1, -8, 20, -16, 2] is row n=8 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments. MATHEMATICA CoefficientList[Series[(1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3) *Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *) PROG (PARI) my(x='x+O('x^30)); Vec((1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2 -4*x^3)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019 (MAGMA) m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019 (Sage) ((1-8*x+20*x^2-16*x^3+2*x^4 +(1-6*x+10*x^2-4*x^3)*sqrt(1-4*x))/2 ).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019 CROSSREFS Cf. A115139 - A115146, A115148, A115149. Sequence in context: A081963 A208085 A128909 * A302241 A022700 A214457 Adjacent sequences:  A115144 A115145 A115146 * A115148 A115149 A115150 KEYWORD sign,easy AUTHOR Wolfdieter Lang, Jan 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 05:47 EDT 2019. Contains 325213 sequences. (Running on oeis4.)