login
A115115
Number of 3-asymmetric rhythm cycles: binary necklaces of length 3n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th and (k+2n)-th beads (modulo 3n) are of color 0.
1
2, 4, 8, 24, 70, 232, 782, 2744, 9710, 34990, 127102, 466152, 1720742, 6391714, 23860936, 89479864, 336860182, 1272587758, 4822419422, 18325211326, 69810262088, 266548336954, 1019836872142, 3909374909672, 15011998757958
OFFSET
1,1
LINKS
R. W. Hall and P. Klingsberg, Asymmetric Rhythms, Tiling Canons and Burnside's Lemma, Bridges Proceedings, pp. 189-194, 2004 (Winfield, Kansas).
R. W. Hall and P. Klingsberg, Asymmetric Rhythms and Tiling Canons, Preprint, 2004; The American Mathematical Monthly, Volume 113, 2006 - Issue 10, [alternative link].
FORMULA
a(n) = (Sum_{d|n}phi(3d) + Sum_{d|n, (3, d)=1}phi(d)*4^(n/d))/(3n), where phi(n) is the Euler function A000010.
a(n) ~ 4^n / (3*n). - Vaclav Kotesovec, Aug 28 2019
MATHEMATICA
a[n_] := (Sum[EulerPhi[3d], {d, Divisors[n]}] + Sum[Boole[CoprimeQ[3, d]] EulerPhi[d] 4^(n/d), {d, Divisors[n]}])/(3n);
Array[a, 25] (* Jean-François Alcover, Aug 28 2019 *)
PROG
(PARI) a(n) = (sumdiv(n, d, eulerphi(3*d)) + sumdiv(n, d, if (gcd(d, 3)==1, eulerphi(d)*4^(n/d))))/(3*n); \\ Michel Marcus, Aug 28 2019
CROSSREFS
Cf. A115114.
Sequence in context: A231721 A114900 A264570 * A026097 A264557 A067646
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Jan 17 2006
STATUS
approved