login
A115114
Asymmetric rhythm cycles (patterns): binary necklaces of length 2n subject to the restriction that for any k if the k-th bead is of color 1 then the (k+n)-th bead (modulo 2n) is of color 0.
3
2, 3, 6, 11, 26, 63, 158, 411, 1098, 2955, 8054, 22151, 61322, 170823, 478318, 1345211, 3798242, 10761723, 30585830, 87169619, 249056138, 713205903, 2046590846, 5883948951, 16945772210, 48882035163, 141214768974
OFFSET
1,1
LINKS
R. W. Hall and P. Klingsberg, Asymmetric Rhythms, Tiling Canons and Burnside's Lemma, Bridges Proceedings, pp. 189-194, 2004 (Winfield, Kansas).
R. W. Hall and P. Klingsberg, Asymmetric Rhythms and Tiling Canons, Preprint, 2004; The American Mathematical Monthly, Volume 113, 2006 - Issue 10, [alternative link].
FORMULA
a(n) = (Sum_{d|n}phi(2d)+Sum_{d|n, d odd}phi(d)3^(n/d))/(2n), where phi(n) is the Euler function A000010.
a(n) ~ 3^n/(2*n). - Vaclav Kotesovec, Oct 27 2024
EXAMPLE
For n=3, the 27=3^3 admissible words are separated into 6 shift-equivalence classes (necklaces) containing, resp., the words 000000, 100000, 110000, 101000, 111000 and 101010. Thus a(3)=6.
MATHEMATICA
a[n_] := Sum[EulerPhi[2d] + Boole[OddQ[d]] EulerPhi[d] 3^(n/d), {d, Divisors[n]}]/(2n);
Array[a, 27] (* Jean-François Alcover, Aug 29 2019 *)
CROSSREFS
Sequence in context: A051603 A094927 A024423 * A356715 A324768 A086209
KEYWORD
easy,nonn
AUTHOR
Valery A. Liskovets, Jan 17 2006
STATUS
approved