login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115091 Primes p such that p^2 divides m!+1 for some integer m<p. 2
5, 11, 13, 47, 71, 563, 613 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

By Wilson's theorem, we know that there is an m=p-1 such that p divides m!+1. Sequence A115092 gives the number of m for each prime. Occasionally p^2 also divides m!+1. These primes seem to be only slightly more plentiful than Wilson primes (A007540). No other primes < 10^6.

There is no prime p < 10^8 such that p^2 divides m!+1 for some m <= 1200. [From F. Brunault (brunault(AT)gmail.com), Nov 23 2008]

For a(n), m = p-A259230(n). - Felix Fröhlich, Jan 24 2016

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, 3rd Ed., New York, Springer-Verlag, 2004, Section A2.

LINKS

Table of n, a(n) for n=1..7.

MATHEMATICA

nn=1000; lst={}; Do[p=Prime[i]; p2=p^2; f=1; m=1; While[m<p && f+1<p2, m++; f=Mod[f*m, p2]]; If[m<p, AppendTo[lst, p]], {i, PrimePi[nn]}]; lst

Select[Prime@ Range@ 1000, Function[p, AnyTrue[Range[p - 1], Divisible[#! + 1, p^2] &]]] (* Michael De Vlieger, Jan 24 2016, Version 10 *)

PROG

(PARI) forprime(p=1, , for(k=1, p-1, if(Mod((p-k)!, p^2)==-1, print1(p, ", "); break({1})))) \\ Felix Fröhlich, Jan 24 2016

CROSSREFS

Cf. A064237 (n!+1 is divisible by a square), A259230.

Sequence in context: A269844 A116440 A098720 * A034924 A018607 A032481

Adjacent sequences:  A115088 A115089 A115090 * A115092 A115093 A115094

KEYWORD

hard,more,nonn

AUTHOR

T. D. Noe, Mar 01 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 17 19:40 EST 2017. Contains 294834 sequences.