OFFSET
0,3
COMMENTS
Also equals row sums of triangle A125080.
FORMULA
a(n) = Sum_{k=0..[n/2]} A000108(n-k)*A001147(k)*C(n,2*k), where A000108 is the Catalan numbers and A001147 is the double factorials.
a(n) = Sum_{k=0..[n/2]} A000108(n-k)*A000108(k)*(k+1)!*C(n,2k)/2^k where A000108(n) = C(2n,n)/(n+1) are the Catalan numbers. a(n) = Sum_{k=0..n} (-1)^(n-k)*n!/k!*A115082(k) . - Paul D. Hanna, Feb 19 2007
EXAMPLE
PROG
(PARI) {a(n)=sum(k=0, n\2, binomial(2*n-2*k, n-k)/(n-k+1)*binomial(2*k, k)*k!/2^k*binomial(n, 2*k))}
(PARI) {a(n)=sum(k=0, n\2, (2*n-2*k)!*n!/k!/(n-k)!/(n-k+1)!/(n-2*k)!/2^k )}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 13 2006, Nov 19 2006
STATUS
approved