

A115026


Limiting value of n under iteration of "sum of the digits raised to the power of the number of digits of n" (A101337).


0



1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 5, 1, 370, 370, 370, 370, 370, 1, 4, 5, 8, 1, 4, 370, 370, 370, 1, 370, 9, 1, 1, 370, 370, 370, 370, 370, 370, 370, 370, 370, 4, 370, 1, 370, 370, 370, 370, 1, 370, 370, 370, 370, 370, 370, 370, 370, 370, 160, 370, 370, 370, 370, 370, 370
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Iterate A101337 starting at n until reaching a constant value (like 370) or a cycle (like 160, 217, 352, 160...). In the latter case a(n) takes the smallest value in the cycle (e.g. a(59) = 160). Since k*9^k < 10^k for all k>34, then each number n is guaranteed to yield a smaller number a(n) if n > 10^34, so every number reaches a constant or a cycle under this sequence.


LINKS

Table of n, a(n) for n=1..65.


EXAMPLE

E.g. a(89)=370 since:
89 (2 digits): 8^2 + 9^2 = 145
145 (3 digits): 1^3 + 4^3 + 5^3 = 190
190 (3 digits): 1^3 + 9^3 + 0^3 = 730
730 (3 digits): 7^3 + 3^3 + 0^3 = 370
370 (3 digits): 3^3 + 7^3 + 0^3 = 370...etc
So a(89) = 370 since 370 is a constant value under this series.


CROSSREFS

Cf. A101337.
Sequence in context: A209685 A114570 A247796 * A101337 A135208 A156207
Adjacent sequences: A115023 A115024 A115025 * A115027 A115028 A115029


KEYWORD

nonn,base


AUTHOR

Sergio Pimentel, Feb 24 2006


STATUS

approved



