login
Each term is previous term plus floor of root mean square of two previous terms.
1

%I #8 Jun 23 2014 17:06:54

%S 1,2,3,5,9,16,28,50,90,162,293,529,956,1728,3124,5648,10211,18462,

%T 33380,60352,109119,197293,356716,644961,1166123,2108412,3812120,

%U 6892514,12462029,22532007,40739059,73658371,133178227,240793271,435366958,787166465

%N Each term is previous term plus floor of root mean square of two previous terms.

%C What is this sequence and the ratio of adjacent terms, asymptotically? Primes in this sequence include 2, 3, 5, 293. Squares in this sequence include 9, 16, 529.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Root-Mean-Square.html">Root-Mean-Square.</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Mean.html">Mean.</a>

%F a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(RMS[a(n),a(n-1)]). a(n+1) = a(n) + floor[Sqrt[[a(n)^2]+[a(n-1)^2]/2]].

%e a(3) = 2 + floor[sqrt[(1^2 + 2^2)/2]] = 2 + floor[Sqrt[5/2]] = 2 + 1 = 3.

%e a(4) = 3 + floor[sqrt[(2^2 + 3^2)/2]] = 4 + floor[Sqrt[13/2]] = 3 + 2 = 5.

%e a(5) = 5 + floor[sqrt[(3^2 + 5^2)/2]] = 8 + floor[Sqrt[34/2]] = 5 + 4 = 9.

%e a(6) = 9 + floor[sqrt[(5^2 + 9^2)/2]] = 15 + floor[Sqrt[106/2]] = 9 + 7 = 16.

%e a(7) = 16 + floor[sqrt[(9^2 + 16^2)/2]] = 15 + floor[Sqrt[337/2]] = 16 + 12 = 28.

%e a(8) = 28 + floor[sqrt[(16^2 + 28^2)/2]] = 15 + floor[Sqrt[1040/2]] = 28 + 22 = 50.

%e a(9) = 50 + floor[sqrt[(28^2 + 50^2)/2]] = 50 + floor[Sqrt[3284/2]] = 50 + 40 = 90.

%e a(10) = 90 + floor[sqrt[(50^2 + 90^2)/2]] = 50 + floor[Sqrt[10600/2]] = 90 + 72 = 162.

%e a(11) = 162 + floor[sqrt[(90^2 + 162^2)/2]] = 50 + floor[Sqrt[34344/2]] = 162 + 131 = 293.

%e a(12) = 293 + floor[sqrt[(162^2 + 293^2)/2]] = 293 + floor[Sqrt[112093/2]] = 293 + 236 = 529.

%p rms := proc(a,b)

%p sqrt((a^2+b^2)/2) ;

%p end proc:

%p A114834 := proc(n)

%p option remember;

%p if n<= 2 then

%p n;

%p else

%p procname(n-1)+floor(rms(procname(n-1),procname(n-2))) ;

%p end if;

%p end proc: # _R. J. Mathar_, Jun 23 2014

%Y Cf. A065094, A065095.

%K easy,nonn

%O 1,2

%A _Jonathan Vos Post_, Feb 19 2006