The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114830 Each term is previous term plus ceiling of geometric mean of all previous terms. 1
 1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 48, 59, 71, 85, 101, 119, 139, 162, 187, 215, 246, 280, 318, 359, 404, 453, 507, 565, 628, 697, 771, 851, 937, 1029, 1128, 1234, 1348, 1470, 1600, 1738, 1885, 2042, 2209, 2386, 2574, 2773, 2984, 3207, 3443, 3692, 3955, 4232, 4524, 4831, 5154, 5494, 5851, 6226, 6620 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS What is this sequence, asymptotically? a(n) is prime for n = 2, 6, 9, 12, 13, 15, 17, 24, ... are there an infinite number of prime values? LINKS Eric Weisstein's World of Mathematics, Geometric Mean. FORMULA a(1) = 1, a(n+1) = a(n) + ceiling(GeometricMean[a(1),a(2),...,a(n)]). a(n+1) = a(n) + ceiling[((a(1)*a(2)*,...,*a(n))^(1/n)]. EXAMPLE a(2) = 1 + ceiling(1^(1/1)) = 1 + 1 = 2. a(3) = 2 + ceiling[(1*2)^(1/2)] = 2 + ceiling[sqrt(2)] = 2 + 2 = 4. a(4) = 4 + ceiling[(1*2*4)^(1/3)] = 4 + ceiling[CubeRoot(8)] = 4 + 2 = 6. a(5) = 6 + ceiling[(1*2*4*6)^(1/4)] = 6 + floor[4thRoot(48)] = 6 + 3 = 9. a(6) = 9 + ceiling[(1*2*4*6*9)^(1/5)] = 9 + ceiling[5thRoot(432)] = 9 + 4 = 13. a(7) = 13 + ceiling[(1*2*4*6*9*13)^(1/6)] = 6 + floor[6thRoot(5616)] = 13 + 5 = 18. a(25) = 359 + ceiling[(1 * 2 * 4 * 6 * 9 * 13 * 18 * 24 * 31 * 39 * 48 * 59 * 71 * 85 * 101 * 119 * 139 * 162 * 187 * 215 * 246 * 280 * 318 * 359)^(1/24)] = 359 + ceiling[44.8074289] = 359 + 45 = 404. MAPLE A114830 := proc(n)     option remember;     if n= 1 then         1;     else         mul(procname(i), i=1..n-1) ;         procname(n-1)+ceil(root[n-1](%)) ;     end if; end proc: seq(A114830(n), n=1..60) ; # R. J. Mathar, Jun 23 2014 CROSSREFS Cf. A065094, A065095. Sequence in context: A247179 A319158 A175780 * A177239 A001304 A000064 Adjacent sequences:  A114827 A114828 A114829 * A114831 A114832 A114833 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Feb 19 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 06:13 EDT 2020. Contains 336201 sequences. (Running on oeis4.)