1,1

If n = prod{ p_i^x_i }, a(n) = prod{ p_i^y_i } then we require y_i = x_i - 1 whenever x_i > 0.

Same as A114371 for squarefree n.

If k is abundant then k = a(k * prod{ p | k }).

Table of n, a(n) for n=1..46.

12 = 2^2.3^1, so a(12)=70 is the least abundant 2^1.3^0.k with (k,2.3)=1.

Cf. A005101, A005231, A047802, A114371.

Sequence in context: A283040 A229603 A203599 * A114371 A047802 A278705

Adjacent sequences: A114806 A114807 A114808 * A114810 A114811 A114812

nonn

Hugo van der Sanden, Feb 09 2006

approved