login
A114703
a(2*n) = F(3*n)*F(3*n+2), a(2*n+1) = F(3*n+1)*F(3*n+2), where F = A000045.
1
0, 1, 10, 15, 168, 273, 3026, 4895, 54288, 87841, 974170, 1576239, 17480760, 28284465, 313679522, 507544127, 5628750624, 9107509825, 101003831722, 163427632719, 1812440220360, 2932589879121, 32522920134770, 52623190191455
OFFSET
0,3
FORMULA
G.f.: x*(1+10*x-2*x^2-2*x^3+x^4)/(1-17*x^2-17*x^4+x^6). - Robert Israel, Mar 29 2018
MAPLE
f:= gfun:-rectoproc({a(n)-17*a(n+2)-17*a(n+4)+a(n+6), seq(a(i) = [ 0, 1, 10, 15, 168, 273][i+1], i=0..5)}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Mar 29 2018
MATHEMATICA
F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2] a = Flatten[Table[{F[3*n]*F[3*n + 2], F[3*n + 1]*F[3*n + 2]}, {n, 0, 17}]]
CROSSREFS
Cf. A000045.
Sequence in context: A166626 A238759 A278349 * A134515 A232608 A175335
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Feb 21 2006
EXTENSIONS
Edited by N. J. A. Sloane, Feb 11 2007
STATUS
approved