login
A114617
Numbers k such that k and k+1 are both refactorable numbers.
15
1, 8, 1520, 50624, 62000, 103040, 199808, 221840, 269360, 463760, 690560, 848240, 986048, 1252160, 1418480, 2169728, 2692880, 2792240, 3448448, 3721040, 3932288, 5574320, 5716880, 6066368, 6890624, 6922160, 8485568
OFFSET
1,2
COMMENTS
It is not possible to have three consecutive refactorable numbers (see the link). The sequence is best viewed in base 12, with X for 10 and E for 11: 1, 8, X68, 25368, 2EX68, 4E768, 97768, X8468, 10EX68, 1X4468, 293768, 34XX68, 3E6768, 504768, 584X68, 887768, X9X468, E27X68, 11X3768, 12E5468, 1397768, 1X49X68, 1XE8468, 2046768, 2383768, 2399X68, 2X12768. After the first two terms all terms are 68, 368, 468, 668, 768, X68 mod 1000 (base 12). - Walter Kehowski, Jun 19 2006
No successive refactorables seem to be of the form odd, odd+1. If such a pair exist, they must be very large. The first pair of successive refactorables not divisible by 3 is (5*19)^4-1, (5*19)^4. - Walter Kehowski, Jun 25 2006
Zelinsky (2002, Theorem 59, p. 15) proved that all the terms above 1 are even. - Amiram Eldar, Feb 20 2021
LINKS
Jud McCranie, Table of n, a(n) for n = 1..94342 First 1000 terms by Donovan Johnson.
Joshua Zelinsky, Tau Numbers: A Partial Proof of a Conjecture and Other Results, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.8.
Eric Weisstein's World of Mathematics, Refactorable Number.
FORMULA
a(n) mod tau(a(n)) = 0 and (a(n)+1) mod tau(a(n)+1) = 0 where tau(n) is the number of divisors of n. - Walter Kehowski, Jun 19 2006
MAPLE
with(numtheory); RFC:=[]: for w to 1 do for k from 1 to 12^6 do n:=144*k+(6*12+8); if andmap(z-> z mod tau(z) = 0, [n, n+1]) then RFC:=[op(RFC), n]; print(n); fi od od; # it is possible to remove the condition n = (6*12+8) mod 12^2 but you'll get the same sequence. - Walter Kehowski, Jun 19 2006
MATHEMATICA
Select[Join[{1, 8}, 144*Range[10^5] + 80], Mod[#, DivisorSigma[0, #]] == 0 && Mod[#+1, DivisorSigma[0, #+1]] == 0 & ](* Jean-François Alcover, Oct 25 2012, after Walter Kehowski *)
PROG
(PARI) isok(n) = !(n % numdiv(n)) && !((n+1) % numdiv(n+1)); \\ Michel Marcus, Dec 21 2018
(GAP) Filtered([1..10^6], n->n mod Tau(n)=0 and (n+1) mod Tau(n+1)=0 ); # Muniru A Asiru, Dec 21 2018
CROSSREFS
Sequence in context: A252763 A096970 A248386 * A162014 A300545 A300972
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Dec 16 2005
STATUS
approved