This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114591 A composite analogue of the Moebius function: sum{n>=1} a(n)/n^s = product{c=composites} (1 -1/c^s) = zeta(s) *product{k>=2} (1 -1/k^s). 1
 1, 0, 0, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, -1, -1, -1, 0, 0, -1, -1, -1, -1, 0, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For n >= 2, sum{k|n} (A050370(n/k)) *a(k) = 0. sum{n>=1} a(n)/n^2 = pi^2/12. a(n) = sum{k|n} (A114592(k)). LINKS FORMULA a(1) = 1; for n>= 2, a(n) = sum, over ways to factor n into any number of distinct composites, of (-1)^(number of composites in a factorization). (See example.) EXAMPLE 24 can be factored into distinct composites as 24 and as 4*6. So a(24) = (-1)^1 + (-1)^2 = 0, where the 1 exponent is due to the 1 factor of the 24 = 24 factorization and the 2 exponent is due to the 2 factors of the 24 = 4*6 factorization. CROSSREFS Cf. A050370, A114592. Sequence in context: A121559 A004641 A100810 * A174889 A005171 A076404 Adjacent sequences:  A114588 A114589 A114590 * A114592 A114593 A114594 KEYWORD more,sign AUTHOR Leroy Quet, Dec 11 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .