This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114590 Number of peaks at even levels in all hill-free Dyck paths of semilength n+2 (a hill in a Dyck path is a peak at level 1). 4
 1, 2, 8, 28, 103, 382, 1432, 5408, 20546, 78436, 300636, 1156188, 4459267, 17241526, 66807856, 259361920, 1008598126, 3928120924, 15319329472, 59817190552, 233826979750, 914962032172, 3583556424208, 14047386554368, 55108441878868 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (1+2*z^2-(1+2*z)*sqrt(1-4*z))/(2*z^2*(2+z)^2*sqrt(1-4*z)). a(n) = sum(k*A114588(n+2,k),k=0..n+1). a(n)=sum{k=0..n, sum{j=0..n-k, C(n-j,k-j)*C(n-j,k)*(j+1)}}; - Paul Barry, Nov 03 2006 Conjecture: 2*(n+2)*a(n) +(-7*n-9)*a(n-1) -18*a(n-2) +2*(-7*n+19)*a(n-3) +4*(-2*n+3)*a(n-4)=0. - R. J. Mathar, Nov 15 2012 Recurrence: 2*n*(n+2)*(3*n+1)*a(n) = (21*n^3 + 34*n^2 + n - 8)*a(n-1) + 2*(n+1)*(2*n+1)*(3*n+4)*a(n-2). - Vaclav Kotesovec, Feb 12 2014 a(n) ~ 4^(n+2) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014 EXAMPLE a(1)=2 because in the 2 (=A000957(4)) hill-free Dyck paths of semilength 3, namely UUUDDD and U(UD)(UD)D (U=(1,1), D=(1,-1)) we have altogether 2 peaks at even level (shown between parentheses). MAPLE G:=(1+2*z^2-(1+2*z)*sqrt(1-4*z))/2/z^2/(2+z)^2/sqrt(1-4*z): Gser:=series(G, z=0, 30): 1, seq(coeff(Gser, z^n), n=1..25); MATHEMATICA CoefficientList[Series[(1+2*x^2-(1+2*x)*Sqrt[1-4*x])/2/x^2/(2+x)^2/Sqrt[1-4*x], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *) CROSSREFS Cf. A114588, A114587, A114515. Sequence in context: A066796 A104934 A056711 * A133592 A115967 A150714 Adjacent sequences:  A114587 A114588 A114589 * A114591 A114592 A114593 KEYWORD nonn AUTHOR Emeric Deutsch, Dec 11 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 00:54 EST 2019. Contains 329885 sequences. (Running on oeis4.)