login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114509 Number of Dyck paths of semilength n having no ascents of length 4. 3
1, 1, 2, 5, 13, 37, 111, 345, 1104, 3611, 12016, 40548, 138414, 477076, 1657956, 5802920, 20436910, 72369903, 257518806, 920333307, 3302003826, 11888979066, 42944410207, 155576009845, 565127618392, 2057903975752, 7510967300206 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also number of ordered trees with n edges that have no vertices of outdegree 4.

LINKS

Table of n, a(n) for n=0..26.

FORMULA

G.f.: G=G(z) satisfies z^5*G^5-z^4*G^4+zG^2-G+1=0.

a(n) = 1/n*sum(j=ceiling((3*n+2)/5)..n, C(n,j)*C(5*j-3*n-2,j-1) * (-1)^(n-j)), n>0. [From Vladimir Kruchinin, Mar 07 2011]

EXAMPLE

a(4) = 13 because among the Catalan(4)=14 Dyck paths of semilength 4 only UUUUDDDD has an ascent of length 4 (here U=(1,1), D=(1,-1)).

MAPLE

Order:=35: Y:=solve(series((Y-Y^2)/(1-Y^4+Y^5), Y)=z, Y): seq(coeff(Y, z^n), n=1..30); #(Y=zG)

PROG

(Maxima) a114509(n):= 1/n*sum(binomial(n, j)*binomial(5*j-3*n-2, j-1)* (-1)^(n-j), j, ceiling((3*n+2)/5), n); [Vladimir Kruchinin, Mar 07 2011]

CROSSREFS

Cf. A102403, A114507, A114508.

Sequence in context: A126031 A151416 A193114 * A003080 A149854 A151442

Adjacent sequences:  A114506 A114507 A114508 * A114510 A114511 A114512

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Dec 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 18:55 EST 2019. Contains 320400 sequences. (Running on oeis4.)