login
A114476
Triangle read by rows: inverse of triangle in A061554 with signs in each column +,+,-,-,+,+,-,-,...
0
1, -1, 1, 3, -1, 1, -3, 4, -1, 1, 5, -4, 5, -1, 1, -5, 9, -5, 6, -1, 1, 7, -9, 14, -6, 7, -1, 1, -7, 16, -14, 20, -7, 8, -1, 1, 9, -16, 30, -20, 27, -8, 9, -1, 1, -9, 25, -30, 50, -27, 35, -9, 10, -1, 1, 11, -25, 55, -50, 77, -35, 44, -10, 11, -1, 1, -11, 36, -55, 105, -77, 112, -44, 54, -11, 12, -1, 1, 13, -36, 91, -105, 182, -112, 156, -54, 65, -12, 13, -1, 1
OFFSET
0,4
COMMENTS
Unsigned row sums appear to be A014739.
EXAMPLE
Start with a signed version of A061554:
1;
1, 1;
-2, 1, 1;
-3, -3, 1, 1;
6, -4, -4, 1, 1;
10, 10, -5, -5, 1;
...
and invert it, getting:
1
-1, 1;
3, -1, 1;
-3, 4, -1, 1;
5, -4, 5, -1, 1;
-5, 9, -5, 6, -1, 1;
...
MAPLE
A061554 := proc(n, k) binomial(n+k, floor(k/2)) ; end: nmax := 13 : A := array(1..nmax, 1..nmax) : for r from 1 to nmax do for c from 1 to nmax do A[r, c] := A061554(c-1, r-c)*(-1)^floor((r-c)/2) ; od: od: A := linalg[inverse](A) : for r from 1 to nmax do for c from 1 to r do printf("%d, ", A[r, c]) ; od: od: # R. J. Mathar, Jan 31 2008
MATHEMATICA
A061554[n_, k_] := Binomial[n+k, Floor[k/2]];
nmax = 13;
A = Table[A061554[c-1, r-c]*(-1)^Floor[(r-c)/2], {r, nmax}, {c, nmax}];
A = Inverse[A];
Table[A[[r, c]], {r, nmax}, {c, r}] // Flatten (* Jean-François Alcover, May 01 2023 *)
CROSSREFS
Sequence in context: A192812 A125127 A051120 * A260419 A117184 A035690
KEYWORD
sign,tabl,easy
AUTHOR
Gary W. Adamson, Nov 27 2006
EXTENSIONS
Edited by N. J. A. Sloane, Dec 01 2006
More terms from R. J. Mathar, Jan 31 2008
STATUS
approved