login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114476 Triangle read by rows: inverse of triangle in A061554 with signs in each column +,+,-,-,+,+,-,-,... 0
1, -1, 1, 3, -1, 1, -3, 4, -1, 1, 5, -4, 5, -1, 1, -5, 9, -5, 6, -1, 1, 7, -9, 14, -6, 7, -1, 1, -7, 16, -14, 20, -7, 8, -1, 1, 9, -16, 30, -20, 27, -8, 9, -1, 1, -9, 25, -30, 50, -27, 35, -9, 10, -1, 1, 11, -25, 55, -50, 77, -35, 44, -10, 11, -1, 1, -11, 36, -55, 105, -77, 112, -44, 54, -11, 12, -1, 1, 13, -36, 91, -105, 182, -112, 156 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Unsigned row sums appear to be A014739.

LINKS

Table of n, a(n) for n=0..84.

EXAMPLE

Start with a signed version of A061554:

1;

1, 1;

-2, 1, 1;

-3, -3, 1, 1;

6, -4, -4, 1, 1;

10, 10, -5, -5, 1;

...

and invert it, getting:

1

-1, 1;

3, -1, 1;

-3, 4, -1, 1;

5, -4, 5, -1, 1;

-5, 9, -5, 6, -1, 1;

...

MAPLE

A061554 := proc(n, k) binomial(n+k, floor(k/2)) ; end: nmax := 13 : A := array(1..nmax, 1..nmax) : for r from 1 to nmax do for c from 1 to nmax do A[r, c] := A061554(c-1, r-c)*(-1)^floor((r-c)/2) ; od: od: A := linalg[inverse](A) : for r from 1 to nmax do for c from 1 to r do printf("%d, ", A[r, c]) ; od: od: # R. J. Mathar, Jan 31 2008

CROSSREFS

Sequence in context: A192812 A125127 A051120 * A260419 A117184 A035690

Adjacent sequences:  A114473 A114474 A114475 * A114477 A114478 A114479

KEYWORD

sign,tabl,easy

AUTHOR

Gary W. Adamson, Nov 27 2006

EXTENSIONS

Edited by N. J. A. Sloane, Dec 01 2006

More terms from R. J. Mathar, Jan 31 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 3 14:34 EDT 2020. Contains 333197 sequences. (Running on oeis4.)